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Overview

● Why custom page fault handling?

● Existing solution

● eBPF solution

● Applications
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Why Custom Page Fault Handling?

● Page access notifications

● Set faulting page contents on page-in

● Greater application control of memory management
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Why Custom Page Fault Handling: VM Migration

● Move VM across servers – minimize downtime

● Copy minimal required memory first

● Lazily copy remaining pages on access
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User Space Page Fault Handling

● userfaultfd()

● Added in Linux 4.3 (2015)

● Original motivation: post-copy VM migration

● Separate thread runs fault routine
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Performance Limitations of userfaultfd()

● Fault-handling thread leads to context switch

● At least three kernel-user space crossings

● Excess data copying
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Scalability Limitations of userfaultfd()
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Security Limitations of userfaultfd()

● Exploited in a number of vulnerabilities
○ Indefinitely block kernel execution at a specific point

● Disabled in some container runtimes by default

12



eBPF Page Fault Handling

● Push fault-handling routine into kernel

● Per-VMA eBPF programs
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Benefits of eBPF Fault Handling

● No fault-handling thread – each thread handles own page faults

● At least one kernel-user space crossing

● Potential for zero-copy fault handling
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Applications

● Post-copy VM migration

● Faster Java garbage collection

● Accelerating start-up of serverless functions

● Performant memory debugging

● more…
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Conclusion

● Applications desire custom page fault handling

● userfaultfd() has real limitations

● We propose eBPF-based page fault handling
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