Custom Page Fault Handling
with eBPF

Tal Zussman®, Teng Jiang®*, Asaf Cidon
Columbia University



Overview

Why custom page fault handling?
Existing solution

eBPF solution

Applications



Why Custom Page Fault Handling?

® Page access notifications
® Setfaulting page contents on page-in
® Greater application control of memory management



Why Custom Page Fault Handling: VM Migration

® Move VM across servers — minimize downtime
® Copy minimal required memory first
® Lazily copy remaining pages on access



User Space Page Fault Handling

userfaultfd()

Added in Linux 4.3 (2015)

Original motivation: post-copy VM migration
Separate thread runs fault routine



Main Thread

Fault Handling
Thread

User Space
Kernel Space

Virtual
Memory

Application

uffd fault
handler

uffd
object

Physical Pages

NN

NN




Main Thread

Fault Handling
Thread

User Space
Kernel Space

Virtual

Memo
Y Physical Pages

Application

uffd fault
handler

uffd
object

= l“‘\\\\\ N

-
-

I

NN




User Space
Kernel Space

Virtual
c
5 Memory .
§ Access Physical Pages
< s “
<§(:_ userfaul : \\\\\
: tfg :
MainThread ... _| uffd
Fault Handling Y ; object
Thread \,ea‘“/
~
O~
ot :
A~ E
uffd fault | Write NN
handler ——— v — //
_— — *
\o =) Page
i




User Space
Kernel Space

Virtual
Memory

Application

Main Thread

Fault Handling 60
Thread \,ea/ ~ -

uffd fault Write

uffd
object

handler T —

Physical Pages

ENNNNNN

Ado)o



Performance Limitations of userfaultfd()

® Fault-handling thread leads to context switch
® At leastthree kernel-user space crossings
® Excess data copying

10



Scalability Limitations of userfaultfd()

1.75-

1.50;

Time (seconds)
(=]
-
LR

=
r
]

=
=
o

o
wn
o

—e— userfaultfd() handling
--=- Kernel handling

0 100 200 300 400 500
Number of Threads

11



Security Limitations of userfaultfd()

® Exploited in a number of vulnerabilities
o Indefinitely block kernel execution at a specific point

® Disabled in some container runtimes by default

12



eBPF Page Fault Handling

® Push fault-handling routine into kernel
® Per-VMA eBPF programs

13



Application

Access

User Space
Kernel Space

Virtual
Memory

l Physical Pages

NN

NN

14



User Space
Kernel Space

Virtual
c Memo
-c%. Access Y Physical Pages
(&)
E :
2 Update : N
. NN
; BPF /
: maps [«
/
A y
.
! /
/
BPF fault [,
handler
‘ N
4 NN
v
S\
o =) Page
:_Q Server




Application

User Space
Kernel Space

Virtual
Memory

BPF fault
handler

.

A

y
—

'

Page
Server

Physical Pages

NN

16



Benefits of eBPF Fault Handling

® No fault-handling thread — each thread handles own page faults
® At least one kernel-user space crossing
® Potential for zero-copy fault handling

17



Applications

Post-copy VM migration

Faster Java garbage collection

Accelerating start-up of serverless functions
Performant memory debugging

more...

18



Conclusion

® Applications desire custom page fault handling
® userfaultfd() hasreal limitations
® We propose eBPF-based page fault handling

Thank you!

Contact:

Tal Zussman Teng Jiang
tz2294@columbia.edu tj2488@columbia.edu

19



	Slide 1: Custom Page Fault Handling with eBPF
	Slide 2: Overview
	Slide 3: Why Custom Page Fault Handling?
	Slide 4: Why Custom Page Fault Handling: VM Migration
	Slide 5: User Space Page Fault Handling
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Performance Limitations of userfaultfd() 
	Slide 11: Scalability Limitations of userfaultfd() 
	Slide 12: Security Limitations of userfaultfd() 
	Slide 13: eBPF Page Fault Handling
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Benefits of eBPF Fault Handling 
	Slide 18: Applications 
	Slide 19: Conclusion 

