
Custom Page Fault Handling 

with eBPF
Tal Zussman*, Teng Jiang*, Asaf Cidon

Columbia University



Overview

● Why custom page fault handling?

● Existing solution

● eBPF solution

● Applications

2



Why Custom Page Fault Handling?

● Page access notifications

● Set faulting page contents on page-in

● Greater application control of memory management

3



Why Custom Page Fault Handling: VM Migration

● Move VM across servers – minimize downtime

● Copy minimal required memory first

● Lazily copy remaining pages on access

4



User Space Page Fault Handling

● userfaultfd()

● Added in Linux 4.3 (2015)

● Original motivation: post-copy VM migration

● Separate thread runs fault routine

5



uffd 

object

Virtual 

Memory

A
p

p
lic

a
ti
o
n

K
e
rn

e
l 
S

p
a

c
e

U
s
e

r 
S

p
a
c
e

Main Thread

Physical Pages

Fault Triggering Page

Fault Handling Buffer Page

uffd fault 

handler

Fault Handling

Thread

6



Virtual 

Memory

A
p

p
lic

a
ti
o
n

K
e
rn

e
l 
S

p
a

c
e

U
s
e

r 
S

p
a
c
e

Main Thread

Physical Pages

Fault Triggering Page

Fault Handling Buffer Page

uffd fault 

handler

Fault Handling

Thread

7

uffd 

object



Virtual 

Memory

A
p

p
lic

a
ti
o
n

K
e
rn

e
l 
S

p
a

c
e

U
s
e

r 
S

p
a
c
e

Main Thread

Physical Pages

Fault Triggering Page

Fault Handling Buffer Page

uffd fault 

handler

Fault Handling

Thread

8

Page 

Server

uffd 

object



Virtual 

Memory

A
p

p
lic

a
ti
o
n

K
e
rn

e
l 
S

p
a

c
e

U
s
e

r 
S

p
a
c
e

Main Thread

Physical Pages

Fault Triggering Page

Fault Handling Buffer Page

uffd fault 

handler

Fault Handling

Thread

9

Page 

Server

uffd 

object



Performance Limitations of userfaultfd()

● Fault-handling thread leads to context switch

● At least three kernel-user space crossings

● Excess data copying

10



Scalability Limitations of userfaultfd()

11



Security Limitations of userfaultfd()

● Exploited in a number of vulnerabilities
○ Indefinitely block kernel execution at a specific point

● Disabled in some container runtimes by default

12



eBPF Page Fault Handling

● Push fault-handling routine into kernel

● Per-VMA eBPF programs

13



Virtual 

Memory

A
p

p
lic

a
ti
o
n

K
e
rn

e
l 
S

p
a

c
e

U
s
e

r 
S

p
a
c
e

Physical Pages

Fault Triggering Page

Fault Handling Buffer Page

14



Virtual 

Memory

A
p

p
lic

a
ti
o
n

K
e
rn

e
l 
S

p
a

c
e

U
s
e

r 
S

p
a
c
e

Physical Pages

Fault Triggering Page

Fault Handling Buffer Page

15

BPF fault 

handler

Load

Page 

Server

BPF 

maps

Update



Virtual 

Memory

A
p

p
lic

a
ti
o
n

K
e
rn

e
l 
S

p
a

c
e

U
s
e

r 
S

p
a
c
e

Physical Pages

Fault Triggering Page

Fault Handling Buffer Page

16

BPF fault 

handler

Load

Page 

Server

BPF 

maps

Update



Benefits of eBPF Fault Handling

● No fault-handling thread – each thread handles own page faults

● At least one kernel-user space crossing

● Potential for zero-copy fault handling

17



Applications

● Post-copy VM migration

● Faster Java garbage collection

● Accelerating start-up of serverless functions

● Performant memory debugging

● more…

18



Conclusion

● Applications desire custom page fault handling

● userfaultfd() has real limitations

● We propose eBPF-based page fault handling

19

Thank you!

Tal Zussman

tz2294@columbia.edu

Teng Jiang

tj2488@columbia.edu

Contact:


	Slide 1: Custom Page Fault Handling with eBPF
	Slide 2: Overview
	Slide 3: Why Custom Page Fault Handling?
	Slide 4: Why Custom Page Fault Handling: VM Migration
	Slide 5: User Space Page Fault Handling
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Performance Limitations of userfaultfd() 
	Slide 11: Scalability Limitations of userfaultfd() 
	Slide 12: Security Limitations of userfaultfd() 
	Slide 13: eBPF Page Fault Handling
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Benefits of eBPF Fault Handling 
	Slide 18: Applications 
	Slide 19: Conclusion 

