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Why Custom Page Fault Handling?

® Page access notifications
® Setfaulting page contents on page-in
® Greater application control of memory management



Why Custom Page Fault Handling: VM Migration

® Move VM across servers — minimize downtime
® Copy minimal required memory first
® Lazily copy remaining pages on access



User Space Page Fault Handling

userfaultfd()

Added in Linux 4.3 (2015)

Original motivation: post-copy VM migration
Separate thread runs fault routine
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Performance Limitations of userfaultfd()

® Fault-handling thread leads to context switch
® At leastthree kernel-user space crossings
® Excess data copying
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Scalability Limitations of userfaultfd()
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Security Limitations of userfaultfd()

® Exploited in a number of vulnerabilities
o Indefinitely block kernel execution at a specific point

® Disabled in some container runtimes by default
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eBPF Page Fault Handling

® Push fault-handling routine into kernel
® Per-VMA eBPF programs
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Benefits of eBPF Fault Handling

® No fault-handling thread — each thread handles own page faults
® At least one kernel-user space crossing
® Potential for zero-copy fault handling
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Applications

Post-copy VM migration

Faster Java garbage collection

Accelerating start-up of serverless functions
Performant memory debugging

more...
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Conclusion

® Applications desire custom page fault handling
® userfaultfd() hasreal limitations
® We propose eBPF-based page fault handling

Thank you!

Contact:

Tal Zussman Teng Jiang
tz2294@columbia.edu tj2488@columbia.edu
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