Kernel Extensions Large
Language Model Agent

Yusheng Zheng, Yiwei Yang, Maolin Chen, Andrew Quinn

IMPERIAL
UG SHNTH GRUZ

eBPF May be hard to write

* For no kernel background junior developer
o DevOps debugging the kernel network stack
o Security engineer monitoring the system
o Developer write network function in xdp or socket

 Similar For Al and LLM

2. Create a BPF program (process_monitor.c):

Hallucinations

* Wrong APl and helpers

BPF_HASH(fork_counter, u32, u64);

(pt_regs *ctx) {
u32 pid = bpf_get_current_pid tgid() »>> 32;

ue4 *counter, zero = 0;

counter = fork counter.lookup or init(&pid, &zero);

(*counter)++;

(*counter >= 20) {

bpf_trace_printk(
bpf kill pid(pid);

https://chatgpt.com/share/6f3b6aca-elb3-427b-b18d-38d8bcdf85cl

tracepoint:xhci-hcd:xhci_stop _device
tracepoint:xhci-hcd:xhci_urb_dequeue
. . tracepoint:xhci-hcd:xhci_urb_enqueue
H a I I UC| n atl on S tracepoint:xhci-hcd:xhci_urb_giveback
root@yunwei-server:/home/yunwei37# bpftrace -1 | wc -1
119752

° WI’Oﬂg attach pOiﬂt root@yunwei-server:/home/yunwei37# I

Here's a simple example of how you can write a ~bpftrace™ script to detect new USB device
attachments:

bash O SHtES

#!/usr/bin/env bpftrace

tracepoint:usb:usb_device_add

{

printf(, args->vendor, args->product);

https://chatgpt.com/share/796109a6-clce-4309-af70-934dad15ecb5

Verifier limitation

if (http_payload[9] && http_payload[1] == & http_payload[’] ==

*url _start = http_payload + 4;

url start;

while (url_end < (*)data_end && *url end !=) {

url end++;

https://chatgpt.com/share/f7e8f41c-c191-41f5-ba28-0e7e2856d889

Incorrect behavior

* Successful pass the
compiler and verifier
* Not consider IPv6
* Port Byte Order:

https://chatgpt.com/share/5¢793353-3ab2-4907-8f82-ecd4bcccb2alf

®

174

write a bpftrace program to trace tcp_connect events and
displaying the source and destination IP addresses with their
respective ports.

Here's a ~“bpftrace™ program that traces ~tcp_connect™ events and displays the source and

destination IP addresses along with their respective ports:

C

O SHRB

#!/usr/bin/env bpftrace

tracepoint:tcp:tcp_connect

{

$sk = (

$saddr
$daddr

$sport
$dport

printf(

sock *)args->sk;

ntop (((
ntop (((

q
q

sockaddr_in *) (((
sockaddr_in *)(((

inet_sock *)$sk)->inet_saddr))->sin_add
inet_sock *)$sk)->inet_daddr))->sin_add

inet_sock *)$sk)->inet_sport;

inet_sock *)$sk)->inet_dport;

,» $saddr, $sport, $daddr

Retrieval-Augmented Generation (RAG)

* eBPF need kernel info

when deployed
_d/ @ I I
Vector DB Wﬂ >{ LLM J

- .

{ Response J

fine-tuning or RAG?) ® |
* Data insufficient J\ W" L aue J

Agent Workflow

* Plans:
* Workflow
* Feedback

* ReAct(Thought, Action,
Observation)

* Tools:
* clang
* Seahorn
* bpftrace
* Memory:

* Short term in-context
memory

Kill Processes that Keent

Fork 20 times

I\

Prompt

— 4

Invalid or

Prompter ——+

Timeout

Synthesis
Engine
i
eBPF Candidate

4

Comprehension
Engine

Annotated
eBPF Candidate

v
Symbolic
Verifier

Invalid

eBPF Program Output

|
eBPF Candidate

eBPF Verifier

Figure 1: The Workflow of KGENT

Example:

User:

"Trace tcp_connect events for both [Pv4 and IPv6 connection
attempts, display the source and destination IP addresse.”

Prompt template

Write a bpftrace program that traces or profile the following user request:

In context learning

User Request

{user_request}

Examples

Here are some simple examples to help you get started with bpftrace:
{examples}

Here are some complex examples may be related to your user request:
{complex_examples}

Use a tool provided to execute your bpftrace program.

You should only write the bpftrace program itself.

Vector DB

* Query: Trace tcp_connect
events for both IPv4 and
IPVv6 connection attempts,
display the source and
destination IP addresse.

* Results:

Traces the TCP SYN backlog size and creates a histogram of the backlog sizes,

also indicating if any SYN packets are being dropped.

#ifndef BPFTRACE_HAVE_ BTF
#include <net/sock.h>
#endif

BEGIN
{

printf("Tracing SYN backlog size. Ctrl-C to end.\n");
}

kprobe:tcp_v4 syn recv_sock,
kprobe:tcp_v6_syn recv_sock
{
$sock = (struct sock *)argo;
@backlog[$sock->sk _max_ack backlog & @xffffffff] =
hist($sock->sk_ack_backlog);
if ($sock->sk_ack backlog > $sock->sk _max_ack backlog) {
time("%H:%M:%S dropping a SYN.\n");
}
}

END
{

printf("\n@backlog[backlog limit]: histogram of backlog size\n");
}

Vector DB: attach and helpers Spec

* Generated Spec with LLM from source code once
* Get related attach and helper Spec from vector DB

"kretprobe:tcp connect _init": {

/* Do all connect socket setups that can be done AF independent. */ "description™: "initializes TCP connection parameters for a

void tep_connect_init(struct sock *sk) (3F31--11 client socket before connection. It takes a sock structure
pointer and adjusts the TCP header length, records
user-defined MSS, and initializes PMTU and CA parameters. It
selects and limits the receive window, sets sequence numbers
and timestamps, clears socket errors, resets flags, purges the
write queue, and sets retransmission timeouts. This modifies
the sock and tcp_sock structures, ensuring the TCP connection

const struct dst_entry *dst = _ sk_dst_get(sk);
struct tcp_sock *tp = tcp_sk(sk);
__u8 rcv_wscale;

u32 rcv_wnd;

from the other end.
se TCP_SYN_SENT.

setup is properly configured before sending SYN packets”,
"proto”:"static void tcp_connect_init(struct sock *sk)",
“pre”: {
"sk": "l= null;-> sk common.skc rcv_saddr != @;
->__sk_common.skc_daddr != @;->__ sk_common.skc_num >=
©-> sk common.skc_dportr != ;"

tp->tcp_header_len = sizeof(struct tcphdr);
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;

tep_ao_connect_init(sk);

Kernel source code

Spec and description

symbolic Verifier

10
11
12
13
14

15

16
17

kprobe:tcp__connect
$sk = (struct sock *) arg0;

assume(sizeof(8sk->__ sk common.skc_rev__saddr) ==

< || sizeof(8sk->___ sk common.skc_rcv_saddr) == 16);
assume(sizeof($sk->__ sk common.skc_ daddr) == 4 ||
— sizeof(8sk->___ sk_common.skc__daddr) == 16);

$saddr = ntop(2, $sk->__ sk _common.skc_rcv_saddr);
$daddr = ntop(2, $sk->___ sk common.skc_ daddr);
$sport = ($sk->__ sk_common.skc_num);

$dport = (8sk->__ sk common.skc_dport);

printf("TCP connect: %s:%d -> %s:%d\n”, $saddr, $sport,
— $daddr, $dport);

Read from template

Use LLM to generate Hoare constraints
Verify by SeaHorn for semantic correctness
Output feedback to LLM

Results

* For bpftrace: System A | EP | EN
GPT-4 few shot 30% | 2.5% | 67.5%
GPT-4+Feedback 60% | 7.5% | 32.5%
GPT-4+Feedback+Symbex | 77.5% | 5% | 17.5%
Human 72.5% | 2.5% | 25%
KGENT 80% | 2.5% | 17.5%

Table 1: The Breakdown Accuracy Analysis of KGENT

* Codellama (Based on llama?2)
bpftrace: 40%

* GPT-4 libbpf feedback: 37.5%

Tested with gpt-4 APl in 2023-09

Limitations and Future work

How to generate larger and better eBPF?

* Limitations:
* Small programs and tasks: <100 lines
* Context window Iimit from LLM
* Dataset small

* Possible solution:

* Split the task
e Like AutoGPT
* Ask user In Iteration

Limitations and Future work

* Verification may not cover all behavior
* More background and description
* Generate better Hoare contract.
* Use more Software Engineering efforts like counterexample generation.
* Test driven development
* Security Vulnerabilities
* Might contain security flaws
* eBPF runs in the kernel

Thank you

Opensource repo:
* https://github.com/eunomia-bpf/GPTtrace
* https://github.com/eunomia-bpf/KEN

https://github.com/eunomia-bpf/GPTtrace
https://github.com/eunomia-bpf/GPTtrace
https://github.com/eunomia-bpf/GPTtrace
https://github.com/eunomia-bpf/GPTtrace
https://github.com/eunomia-bpf/KEN
https://github.com/eunomia-bpf/KEN
https://github.com/eunomia-bpf/KEN
https://github.com/eunomia-bpf/KEN

	Slide 1: Kernel Extensions Large Language Model Agent
	Slide 2: eBPF May be hard to write
	Slide 3: Hallucinations
	Slide 4: Hallucinations
	Slide 5: Verifier limitation
	Slide 6: Incorrect behavior
	Slide 7: Retrieval-Augmented Generation (RAG)
	Slide 8: Agent Workflow
	Slide 9: Example:
	Slide 10: Prompt template
	Slide 11: Vector DB
	Slide 12: Vector DB: attach and helpers Spec
	Slide 13: Symbolic Verifier
	Slide 14: Results
	Slide 15: Limitations and Future work
	Slide 16: Limitations and Future work
	Slide 17: Thank you

