ing Distributed Communication with
cast and Aggregation

Zhang!, Linpu Huang!, Wei Zhang!

UCONN

— eBPF workshop '24

upication is crucial for big data and distributed
aggregation are key communication patterns

et-based methods suffer from significant latency due
ssing and network stack processing

— eBPF workshop '24

enges in Distributed Communication

® User-kernel crossings and network stack traversals introduce
significant overhead

5
LS

0999

5
%
%

5

%

16.89 s

Senger User Space to TC Egress Hook Receiver XDP Hook to User Space
Stages

Figure: User-kernel and kernel-user crossing latency

— eBPF workshop '24

system to enhance distributed communication by
nd kernel hooks (XDP and TC)

sting and aggregation tasks to the kernel space to
d and reduce latency

— eBPF workshop '24

ing custom code in
@b out modifying the

mechanism for
acket processing

control and packet
attaching eBPF

eBPF and Kernel Hooks

User space

Socket Layer
Kernel UDP/TCP Stack
space

Netfilter
Traffic Control (TC)
eXpress Data

Driver Path (XDP)
space

NIC l:)river
Oﬁload[Network Interféce Card (NIC)

RX ™

Figure: eBPF, XDP, and TC in
Kernel

— eBPF workshop '24

D Overview

® Runtime library: user-space APls for kernel interaction

oadcast: eBPF and TC hooks for packet
rding

tion: eBPF and XDP hooks for data aggregation

® |n-kernel

Node-0 Node-M

[BOAD Runtime] [BOAD Runtime]

1 Ri; User Space User Space
|~ bt “KemeiSpace; """ " " Kemel Space

[AF_XDP

Hardware

Hardware

RX X

Figure: Architecture of BOAD

— eBPF workshop '24

ime Library and Protocol Design

ine_config(ip, port): Adds machine config to eBPF
a, ip-list): Broadcasts data to IP addresses
ted_data(data): Sends data for aggregation
ated_data(): Retrieves aggregated data

. [UDP Header] [MAGIC] [MASK] [SEQ] [PAYLOAD]

ocol
mat: [UDP Header] [MAGIC] [KEY] [OP] [SEQ] [PAYLOAD]

— eBPF workshop '24

rnel Components and Retransmission Mechanism

ask, determines destinations, and forwards packets

e_redirect () to clone and forward packets to each

KEY, OP, PAYLOAD), performs aggregation

results in eBPF maps for user-space access

ains sequence number-packet map in eBPF then
ts missing packets and retransmission

— eBPF workshop '24

ation: Broadcast Latency

800
600
400
200

Latency (us)

Receiver (#)

(b) 99th percentile latency

0.3% reduction in 99th percentile latency with 9 receivers

— eBPF workshop '24

ation: Impact of Packet Size

® BOAD maintains
significantly lower broadcast
latency across all packet
sizes

® Broadcast latency remains
relatively stable for BOAD

— eBPF workshop '24

ation: Application-level Performance

® Integrated BOAD into representative distributed applications: BFS,
DFS, PageRank, Fibonacci

= 214
2 q12
S002
g 5
128
Vertices (#)
(b) DFS
220
~ 518
B %lﬁ
T ol4
é’ %12
3 210
g 28
260 — [
10 20 30 40
Vertices (#) Recursive (#)
(c) PageRank (d) Fibonacci

Figure: Computation time for various applications with different input sizes

— eBPF workshop '24

ation: Broadcast Latency

® Up to 84.5% latency reduction for PageRank (512 vertices)
® Major gains when communication overhead dominates

400 == socket-based C——1 B0AD

i
) 2 300
5 & 200
S 3
X S 100
= 0
256 512 16 32 64 128 256 512
Vertices (#)
(b) DFS
400
4 300
%’ 200
w 100
-
0
64 128 256 512
Vertices (#) Recursive (#)
(c) PageRank (d) Fibonacci

Figure: Broadcast latency for various applications with different input sizes

— eBPF workshop '24

different network architectures and environments

tibility with different network architectures and
flexibility for diverse application requirements

— eBPF workshop '24

. Electrode, XAgg, BMC, SPRIGHT, Syrup, XRP
ork computing: ClickINC, Flightplan, ATP

n a generic framework for distributing in-network
broadcast communication without relying on

— eBPF workshop '24

s eBPF and kernel-level packet processing to
ing and aggregation in distributed systems

nd overhead by offloading operations to the kernel
fficient protocols

pting to various use cases and integrating with
unication libraries

— eBPF workshop '24

hank You!

