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enges in Distributed Communication

® User-kernel crossings and network stack traversals introduce
significant overhead
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D Overview

® Runtime library: user-space APls for kernel interaction

oadcast: eBPF and TC hooks for packet
rding
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ime Library and Protocol Design

ine_config(ip, port): Adds machine config to eBPF
a, ip-list): Broadcasts data to IP addresses
ted_data(data): Sends data for aggregation
ated_data(): Retrieves aggregated data
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rnel Components and Retransmission Mechanism

ask, determines destinations, and forwards packets

e_redirect () to clone and forward packets to each

KEY, OP, PAYLOAD), performs aggregation

results in eBPF maps for user-space access

ains sequence number-packet map in eBPF then
ts missing packets and retransmission
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ation: Broadcast Latency
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ation: Impact of Packet Size

® BOAD maintains
significantly lower broadcast
latency across all packet
sizes

® Broadcast latency remains
relatively stable for BOAD
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ation: Application-level Performance

® Integrated BOAD into representative distributed applications: BFS,
DFS, PageRank, Fibonacci
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Figure: Computation time for various applications with different input sizes
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ation: Broadcast Latency

® Up to 84.5% latency reduction for PageRank (512 vertices)
® Major gains when communication overhead dominates
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Figure: Broadcast latency for various applications with different input sizes
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different network architectures and environments

tibility with different network architectures and
flexibility for diverse application requirements
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n a generic framework for distributing in-network
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