
BOAD: Optimizing Distributed Communication with
In-Kernel Broadcast and Aggregation

Jianchang Su1, Yifan Zhang1, Linpu Huang1, Wei Zhang1

1University of Connecticut

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Motivation

• Efficient communication is crucial for big data and distributed
computing systems

• Broadcasting and aggregation are key communication patterns

• Traditional socket-based methods suffer from significant latency due
to user-kernel crossing and network stack processing

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Challenges in Distributed Communication
• User-kernel crossings and network stack traversals introduce

significant overhead
• Overhead increases with more nodes and larger data sizes
• Scalability and performance bottlenecks in distributed systems

Sender User Space to TC Egress Hook Receiver XDP Hook to User Space
Stages

0

10

20

30

40

50

60
Ti

m
e 

(µ
s)

16.89 µs

65.60 µs

Figure: User-kernel and kernel-user crossing latency

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Goal

• Propose BOAD: a system to enhance distributed communication by
leveraging eBPF and kernel hooks (XDP and TC)

• Offload broadcasting and aggregation tasks to the kernel space to
minimize overhead and reduce latency

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Background: eBPF and Kernel Hooks

• eBPF: allows running custom code in
the kernel space without modifying the
kernel

• XDP: eBPF-based mechanism for
high-performance packet processing

• TC: enables traffic control and packet
manipulation by attaching eBPF
programs

Socket Layer

UDP/TCP Stack

Netfilter

Traffic Control (TC)

eXpress Data 
Path (XDP)

NIC Driver

Network Interface Card (NIC)

Kernel 
space

Driver
space

Offload

RX TX

User space

Figure: eBPF, XDP, and TC in
Kernel

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



BOAD Overview
• Runtime library: user-space APIs for kernel interaction

• In-kernel broadcast: eBPF and TC hooks for packet
cloning/forwarding

• In-kernel aggregation: eBPF and XDP hooks for data aggregation

Ring
buffer

BOAD Runtime

User Space
Kernel Space

AF
_X
DP

NIC Driver

…

RX

BOAD Runtime

TX

XDP

TC

…

…

NIC

Hardware

NIC Driver

NIC

Node-0 Node-M

User Space
Kernel Space

Hardware

Figure: Architecture of BOAD

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Runtime Library and Protocol Design

Runtime Library
• Key functions:

• append machine config(ip, port): Adds machine config to eBPF
map

• broadcast(data, ip list): Broadcasts data to IP addresses
• send aggregated data(data): Sends data for aggregation
• get aggregated data(): Retrieves aggregated data

Broadcast Protocol

• Packet format: [UDP Header][MAGIC][MASK][SEQ][PAYLOAD]

Aggregation Protocol

• Packet format: [UDP Header][MAGIC][KEY][OP][SEQ][PAYLOAD]

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



In-kernel Components and Retransmission Mechanism

In-kernel Broadcasting

• Extracts index mask, determines destinations, and forwards packets

• Uses bpf clone redirect() to clone and forward packets to each
destination

In-kernel Aggregation

• Extracts fields (KEY, OP, PAYLOAD), performs aggregation

• Stores aggregated results in eBPF maps for user-space access

Retransmission Mechanism

• Sender maintains sequence number-packet map in eBPF then
receiver detects missing packets and retransmission

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Evaluation: Broadcast Latency

 0
 200
 400
 600
 800

1 3 5 7 9

L
a
te

n
cy

 (
µ

s)

Receiver (#)

Socket-based
BOAD

(a) Average Broadcast latency

 0
 200
 400
 600
 800

1 3 5 7 9

L
a
te

n
cy

 (
µ

s)

Receiver (#)

Socket-based
BOAD

(b) 99th percentile latency

Figure: Comparison of broadcast latencies

• BOAD consistently achieves lower latency compared to the baseline:
• Up to 82.8% reduction in average latency with 9 receivers
• Up to 80.3% reduction in 99th percentile latency with 9 receivers

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Evaluation: Impact of Packet Size

 0

 100

 200

 300

 400

64 128 256 512 1024

L
a
te

n
cy

 (
µ

s)

Pcket Size (Bytes)

Socket-based
BOAD

Figure: Broadcast latency with
varying packet sizes

• BOAD maintains
significantly lower broadcast
latency across all packet
sizes

• Broadcast latency remains
relatively stable for BOAD

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Evaluation: Application-level Performance
• Integrated BOAD into representative distributed applications: BFS,

DFS, PageRank, Fibonacci
• Diverse computational characteristics of these applications

26
28

210
212
214

16 32 64 128 256 512

L
a
te

n
cy

 (
µ

s)

Vertices (#)

(a) BFS

26
28

210
212
214

16 32 64 128 256 512

L
a
te

n
cy

 (
µ

s)

Vertices (#)

(b) DFS

28
210
212
214
216
218

16 32 64 128 256 512

L
a
te

n
cy

 (
µ

s)

Vertices (#)

(c) PageRank

26
28

210
212
214
216
218
220

10 20 30 40
L

a
te

n
cy

 (
µ

s)

Recursive (#)

(d) Fibonacci

Figure: Computation time for various applications with different input sizes

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Evaluation: Broadcast Latency
• Up to 84.5% latency reduction for PageRank (512 vertices)
• Major gains when communication overhead dominates

 0

 100

 200

 300

 400

16 32 64 128 256 512

L
a
te

n
cy

 (
µ

s)

Vertices (#)

Socket-based BOAD

(a) BFS

 0

 100

 200

 300

 400

16 32 64 128 256 512

L
a
te

n
cy

 (
µ

s)

Vertices (#)

Socket-based BOAD

(b) DFS

 0

 100

 200

 300

 400

16 32 64 128 256 512

L
a
te

n
cy

 (
µ

s)

Vertices (#)

Socket-based BOAD

(c) PageRank

 0

 100

 200

 300

 400

10 20 30 40

L
a
te

n
cy

 (
µ

s)

Recursive (#)

Socket-based BOAD

(d) Fibonacci

Figure: Broadcast latency for various applications with different input sizes
BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Discussion

• Adapting BOAD to different network architectures and environments

• Enhancing compatibility with different network architectures and
providing more flexibility for diverse application requirements

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Related Work

• eBPF Applications: Electrode, XAgg, BMC, SPRIGHT, Syrup, XRP

• Distributed in-network computing: ClickINC, Flightplan, ATP

• BOAD focuses on a generic framework for distributing in-network
aggregation and broadcast communication without relying on
specific network characteristics

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Summary

• BOAD leverages eBPF and kernel-level packet processing to
optimize broadcasting and aggregation in distributed systems

• Reduces latency and overhead by offloading operations to the kernel
and designing efficient protocols

• Future work: adapting to various use cases and integrating with
distributed communication libraries

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24



Thank You!

BOAD: Optimizing Distributed Communication with In-Kernel Broadcast and Aggregation — eBPF workshop ’24


