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Motivation

• Interrupt-free, dynamic updates increase network resilience
⇒ application migration
⇒ tenant-specific processing

• P4 and eBPF are well-established languages for programmable packet
processing

⇒ P4: restricted, simple language, optimized for high performance
⇒ eBPF: JIT compiled, more high-level language features

• Both languages bring advantages for specific use-cases
⇒ eBPF programs as well-defined API for P4 externs to extend functionality
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Dynmiac eBPF in P4
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• Extension of P4 pipeline with updatable eBPF modules
• Fixed position
• Extern

• Allows runtime re-programmability
• Exchange using pre-compiled byte code
• JIT compiled to machine code

• Extends P4 functionality with well-defined API
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Dynamic modes

Static

• Fixed, non-changeable functionality

Pre-defined

• Pre-implemented, fixed set of functionality
• Defined before initialization, switchable during runtime

Extensible

• New functionality is sent as source or byte code
• JIT compiled and bound during runtime
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Related Work

Reprogrammable P4:

• Das et al., ActiveRMT [1]: Instruction set in P4 allowing changegable functionality
• Xing et al., FlexCore [6]: Runtime partial reprogrammable switch architecture
• Feng et al., In-situ Programmability Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime

updates

⇒ single-language P4 approaches

P4/eBPF:

• P4 to eBPF [4]: Translation of P4 program to eBPF [4]
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Implementation

• Implementation for software target T4P4S [5]
• eBPF execution using DPDK rte_bpf library

• batched tx/rx eBPF callback execution for fixed position
• non-batched execution for flexible externs

• User space eBPF execution
• Optional BLAKE3-based MACs ensuring authenticity of code updates
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Evaluation
Overhead of eBPF execution at different positions (Throughput)
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Evaluation
Overhead of eBPF execution at different positions (modeled per-packet CPU cycles)
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Evaluation
Median costs of dynamic updates—ten runs (100 Mbit/s)
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⇒ Update of fixed-position functionality more expensive

⇒ Dynamic eBPF byte code installation at reasonable costs

⇒ Authentication possible
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Conclusion

• eBPF offers fixed API for P4 externs
• eBPF hardware offloading solutions exist
• eBPF execution within P4 allows additional applications
• Functionality can be updated during runtime ( 200 µs)

Read the paper if you want more information about:
• Security considerations
• Discussion of different processor positions
• Detailed analysis of program change

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Simon et al.
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Figure 4: Latencies before, during, and after change packet
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Figure 5: Latency of change packet (median as number)

eBPF is already performed on SmartNICs [3]. Implementing externs
inside the P4 pipeline becomes more challenging due to the fixed
clock rates between the pipeline stages. Conditional eBPF execution
would likely not result in a performance gain for the packets that
do not use the extern. Instead, the latencies are likely to be constant,
independent of the executed control flow of each packet [18]. An-
other difficulty is to synchronize the execution times required for
each stage. For that, the existing validators for eBPF guaranteeing
maximum cycle counts can help. The same requirements hold for
extensible updates, and maximum cycles have to be defined. Again,
validators can help calculate maximum cycles. This requirement is
more relaxed in software targets, i.e., run-to-completion targets.

eBPF helps ease runtime adaptability for hardware and software
targets. P4 is a domain-specific language designed for packet pro-
cessing exclusively; therefore, its execution can be optimized in
hardware targets. The results show that providing new function-
ality by distributing its source code is not feasible. Conversely, a
natively compiled binary can only be used on one specific platform.
As eBPF can be distributed as platform-independent byte code and,
as the results show, be installed in a timely manner, it is well-suited

to enable such mechanisms. The same binary can be used for all
targets, hardware, or software. The JIT compilation unleashes full
performance, optimizing it for the underlying machine architecture.

7 Conclusion
We discussed, implemented, and evaluated different approaches
to offload eBPF execution within P4. The overhead is smaller for
fixed-position components than for flexible externs. Fixed-position
components are likely easier to integrate into hardware targets.
However, externs are more flexible in their usage. For dynamic
changes, the fastest option is to activate pre-defined eBPF pro-
grams. However, the more powerful extensible updates, relying on
eBPF binaries, are feasible. Dynamic updates allow an interrupt
free service of the network. A dynamic network function can be
implemented and secured, leveraging authenticated updates. On
the other hand, sending dynamic updates using the source code
proved impractical due to the significant compilation overhead,
which eventually causes packet loss.

The results demonstrate that eBPF execution with dynamic and
seamless updates is possible, enabling a variety of new applications.
The source code of our implementaion is available on GitHub [26].
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BACKUP
Multi-core throughputs

BACKUP
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BACKUP
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BACKUP
Dynamic eBPF in P4

Packet

eBPF
Pre-

processor

Parser

Match-Action
Ingress

eBPF
Mid-

processor

Traffic
Manager

Match-Action
Egress

Deparser

eBPF
Post-

processor

Packet

P4 Pipeline

Data Plane

set_program()

1

Fixed position
• Pre-, Mid-, or Postprocessor
• Processes every packet
• Access to whole packet
• Potentially easier implementation
• E.g., prefilter, preprocessing, hashing/crypto
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BACKUP
Dynamic eBPF in P4
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Extern
• Flexible position as P4 extern
• Conditional execution
• Return value usable
• Access to whole packet or restricted to selected header fields
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BACKUP
Setup
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DuT
• Intel Xeon D-1518 2.2 GHz, 32 RAM
• Latency optimized T4P4S → batch size of one

LoadGen
• MoonGen [2] is used to generate traffic
• Packet size 84 B

Timestamper

• Packet streams duplicated using optical splitter
• Timestamps each packet incoming packet
• Resolution: 12.5 ns
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BACKUP
Costs of dynamic updates—single run (100 Mbit/s)
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⇒ eBPF byte code swapping during runtime possible without packet loss
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