Chair of Network Architectures and Services
School of Computation, Information and Technology

Technical University of Munich

Honey for the Ice Bear — Dynamic eBPF in P4

Manuel Simon, Henning Stubbe, Sebastian Gallenmdiller, Georg Carle

Sunday 4" August, 2024

Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

Motivation TUTI

® |Interrupt-free, dynamic updates increase network resilience

= application migration
= tenant-specific processing

® P4 and eBPF are well-established languages for programmable packet
processing

= P4: restricted, simple language, optimized for high performance
= eBPF: JIT compiled, more high-level language features

e Both languages bring advantages for specific use-cases
= eBPF programs as well-defined API for P4 externs to extend functionality

M. Simon — Dynamic eBPF in P4 2

Dynmiac eBPF in P4

¢BPF Data Plane ¢BPF
Pre- Post-

processor

processor

Traffic
Manager
eBPF
Mid-
processor

A

1
Deparser

Y

e Extension of P4 pipeline with updatable eBPF modules

e Fixed position
e [Extern

e Allows runtime re-programmability

e Exchange using pre-compiled byte code
e JIT compiled to machine code

e Extends P4 functionality with well-defined API

M. Simon — Dynamic eBPF in P4

Dynamic modes

Static
* Fixed, non-changeable functionality
Pre-defined

* Pre-implemented, fixed set of functionality
e Defined before initialization, switchable during runtime

Extensible

e New functionality is sent as source or byte code
e JIT compiled and bound during runtime

M. Simon — Dynamic eBPF in P4

Related Work 'I'I.ITI

Reprogrammable P4:

e Das et al., ActiveRMT [1]: Instruction set in P4 allowing changegable functionality
e Xing et al., FlexCore [6]: Runtime partial reprogrammable switch architecture

e Feng et al.,, In-situ Programmability Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime
updates

= single-language P4 approaches

P4/eBPF:

e P4 to eBPF [4]: Translation of P4 program to eBPF [4]

M. Simon — Dynamic eBPF in P4 5

Implementation TI-ITI

e |mplementation for software target T4P4S [5]

e eBPF execution using DPDK rte_bpf library

e batched tx/rx eBPF callback execution for fixed position
e non-batched execution for flexible externs

e User space eBPF execution
e Optional BLAKE3-based MACs ensuring authenticity of code updates

M. Simon — Dynamic eBPF in P4

Evaluation

Overhead of eBPF execution at different positions (Throughput)

Throughput [Mpps]

5]

1.46 [dummy

Ul 416 492 4.19 416 4.19 [filter
4 — [Ichange

3.53

3 _
2 _
1 _
0 ! . .
baseline pre mid post extern extern_ pkt

Three programs for basic overhead:
e dummy: returns 0

e filter: filters for one UDP port and IP
address

e change: changes a header field

M. Simon — Dynamic eBPF in P4 7

Evaluation
Overhead of eBPF execution at different positions (modeled per-packet CPU cycles)

A CPU cycles

127

72

32 35 32

Wl

233

250 [dummy
[filter
[Ichange
200
150
100 H
75
50 3 4
.. I

\
baseline pre

\
post

195

130

142

\
extern extern_ pkt

Three programs for basic overhead:
e dummy: returns 0
o filter: filters for one UDP port and IP
address
e change: changes a header field

Cost model:

f f
C-= CPU _ cpu

Itestbase I'baseline

M. Simon — Dynamic eBPF in P4

Evaluation
Median costs of dynamic updates—ten runs (100 Mbit/s)

5

175 168 174

2 150

[l | 127
2T 4 =

100

75 1
50

s]

Latenc

== 180

25 1

[preall[|extern

0 T T
pre-defined eBPF byte code

= Update of fixed-position functionality more expensive
= Dynamic eBPF byte code installation at reasonable costs

= Authentication possible

authenticated

M. Simon — Dynamic eBPF in P4

Conclusion

e eBPF offers fixed API for P4 externs

e eBPF hardware offloading solutions exist

e eBPF execution within P4 allows additional applications
e Functionality can be updated during runtime (200 ps)

Read the paper if you want more information about:
e Security considerations
e Discussion of different processor positions
e Detailed analysis of program change

M. Simon — Dynamic eBPF in P4

10

Bibliography TI.ITI

1l

[2]

3]

4]

[5]

6]

R. Das and A. C. Snoeren.

Memory management in activermt: Towards runtime-programmable switches.

In Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM 23, page 10431059, New York, NY, USA, 2023. Association for Computing
Machinery.

P. Emmerich, S. Gallenmdller, D. Raumer, F. Wohlfart, and G. Carle.

Moongen: A scriptable high-speed packet generator.

In K. Cho, K. Fukuda, V. S. Pai, and N. Spring, editors, Proceedings of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo, Japan, October
28-30, 2015, pages 275-287. ACM, 2015.

Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun, Y. Wan, and B. Liu.

Enabling in-situ programmability in network data plane: From architecture to language.

In A. Phanishayee and V. Sekar, editors, 19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022, Renton, WA, USA, April
4-6, 2022, pages 635-649. USENIX Association, 2022.

p4lang.

GitHub p4c/backends/ebpf - eBPF Backend, 2024.

Last accessed: 2024-05-24.

P. Voros, D. Horpécsi, R. Kitlei, D. Lesko, M. Tejfel, and S. Laki.

T4P4S: a target-independent compiler for protocol-independent packet processors.

In I[EEE 19th International Conference on High Performance Switching and Routing, HPSR 2018, Bucharest, Romania, June 18-20, 2018, pages 1-8. IEEE,
2018.

J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy, and A. Chen.

Runtime programmable switches.

In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages 651-665, Renton, WA, Apr. 2022. USENIX Association.

M. Simon — Dynamic eBPF in P4 11

BACKUP TUTI

Multi-core throughputs

BACKUP

M. Simon — Dynamic eBPF in P4 12

BACKUP

—
\V]

—_
o

Throughput [Mpps]

S N =~ O

baseline

pre

mid

post

1core
2cores
3 cores

extern extern_ pkt

M. Simon — Dynamic eBPF in P4

BACKUP

Dynamic eBPF in P4

I\

Y

Data Plane

-

eBPF eBPF
1= set_program() o=
processor |3 3| processor
¥ I
A 1
Parser Traffic Deparser
Manager
Mat ¥ eBPF
atcl

Ingress

P4 Pipeline

Mid-

processor

#h Match-Action
Egress

Fixed position
® Pre-, Mid-, or Postprocessor
e Processes every packet
e Access to whole packet
e Potentially easier implementation
e E.g., prefilter, preprocessing, hashing/crypto

M. Simon — Dynamic eBPF in P4

BACKUP TUT

Dynamic eBPF in P4

Packet Packet

Data Plane

Extern
Parser Traffic Deparser) .
Manager ® Flexible position as P4 extern
N

v -)
[]
Match-Action Match-Action Conditional execution
Ingress Egress e Return value usable

P4 Pipeline e Access to whole packet or restricted to selected header fields

set_program() oy o :

execute_packet () " [eBPF }1 ‘nj

execute() :‘\extern/ -

M. Simon — Dynamic eBPF in P4 15

BACKUP
Setup
<—h——
[DuT Cg % LoadGen
A
vHv
[Timestamper
DuT LoadGen
¢ Intel Xeon D-1518 2.2 GHz, 32 RAM e MoonGen [2] is used to generate traffic
e Latency optimized T4P4S — batch size of one e Packet size 84B

Timestamper

e Packet streams duplicated using optical splitter
e Timestamps each packet incoming packet
e Resolution: 12.5ns

M. Simon — Dynamic eBPF in P4

BACKUP

Costs of dynamic updates—single run (100 Mbit/s)

= eBPF byte code swapping during runtime possible without packet loss

Latency [ps]

Latency [us]

a) pre-defined " b) C source c) eBPF byte code
-10
o before
200 41 < after 200 -
dropped
» change
100 4 27 100
0 T T T T 0= T T 0 T T T T
20 40 60 80 0 20 40 60 80 20 40 60 80
-10*
200 4 200 -
100 4 27 100 4
0 T T T T 0- T T T 0 T T T T
20 40 60 80 0 20 40 60 80 20 40 60 80

Experiment Time [ms]

Experiment Time [ms]

Experiment Time [ms]

M. Simon — Dynamic eBPF in P4

1) pre

2) extern

17

	Motivation
	Dynmiac eBPF in P4
	Dynamic modes
	Related Work
	Implementation
	Evaluation
	Conclusion
	Bibliography
	BACKUP

