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Motivation TUTI

® |Interrupt-free, dynamic updates increase network resilience

= application migration
= tenant-specific processing

® P4 and eBPF are well-established languages for programmable packet
processing

= P4: restricted, simple language, optimized for high performance
= eBPF: JIT compiled, more high-level language features

e Both languages bring advantages for specific use-cases
= eBPF programs as well-defined API for P4 externs to extend functionality
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Dynmiac eBPF in P4
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e Extension of P4 pipeline with updatable eBPF modules

e Fixed position
e [Extern

e Allows runtime re-programmability

e Exchange using pre-compiled byte code
e JIT compiled to machine code

e Extends P4 functionality with well-defined API
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Dynamic modes

Static
* Fixed, non-changeable functionality
Pre-defined

* Pre-implemented, fixed set of functionality
e Defined before initialization, switchable during runtime

Extensible

e New functionality is sent as source or byte code
e JIT compiled and bound during runtime
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Related Work 'I'I.ITI

Reprogrammable P4:

e Das et al., ActiveRMT [1]: Instruction set in P4 allowing changegable functionality
e Xing et al., FlexCore [6]: Runtime partial reprogrammable switch architecture

e Feng et al.,, In-situ Programmability Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime
updates

= single-language P4 approaches

P4/eBPF:

e P4 to eBPF [4]: Translation of P4 program to eBPF [4]
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Implementation TI-ITI

e |mplementation for software target T4P4S [5]

e eBPF execution using DPDK rte_bpf library

e batched tx/rx eBPF callback execution for fixed position
e non-batched execution for flexible externs

e User space eBPF execution
e Optional BLAKE3-based MACs ensuring authenticity of code updates
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Evaluation

Overhead of eBPF execution at different positions (Throughput)

Throughput [Mpps]
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Three programs for basic overhead:
e dummy: returns 0

e filter: filters for one UDP port and IP
address

e change: changes a header field
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Evaluation
Overhead of eBPF execution at different positions (modeled per-packet CPU cycles)

A CPU cycles

127

72

32 35 32

Wl

233

250 [ dummy
[ filter
[ Ichange
200
150
100 H
75
50 3 4
.. I

\
baseline pre

\
post

195

130

142

\
extern extern_ pkt

Three programs for basic overhead:
e dummy: returns 0
o filter: filters for one UDP port and IP
address
e change: changes a header field

Cost model:

f f
C-= CPU _ cpu

Itestbase I'baseline

M. Simon — Dynamic eBPF in P4



Evaluation
Median costs of dynamic updates—ten runs (100 Mbit/s)
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= Update of fixed-position functionality more expensive
= Dynamic eBPF byte code installation at reasonable costs

= Authentication possible

authenticated
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Conclusion

e eBPF offers fixed API for P4 externs

e eBPF hardware offloading solutions exist

e eBPF execution within P4 allows additional applications
e Functionality can be updated during runtime ( 200 ps)

Read the paper if you want more information about:
e Security considerations
e Discussion of different processor positions
e Detailed analysis of program change
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BACKUP TUTI

Multi-core throughputs

BACKUP
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BACKUP
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BACKUP

Dynamic eBPF in P4
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Fixed position
® Pre-, Mid-, or Postprocessor
e Processes every packet
e Access to whole packet
e Potentially easier implementation
e E.g., prefilter, preprocessing, hashing/crypto
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BACKUP TUT

Dynamic eBPF in P4
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BACKUP
Setup
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DuT LoadGen
¢ Intel Xeon D-1518 2.2 GHz, 32 RAM e MoonGen [2] is used to generate traffic
e Latency optimized T4P4S — batch size of one e Packet size 84B

Timestamper

e Packet streams duplicated using optical splitter
e Timestamps each packet incoming packet
e Resolution: 12.5ns
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BACKUP

Costs of dynamic updates—single run (100 Mbit/s)

= eBPF byte code swapping during runtime possible without packet loss
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