
Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

Honey for the Ice Bear – Dynamic eBPF in P4

Manuel Simon, Henning Stubbe, Sebastian Gallenmüller, Georg Carle

Sunday 4th August, 2024

Chair of Network Architectures and Services
School of Computation, Information and Technology

Technical University of Munich

Motivation

• Interrupt-free, dynamic updates increase network resilience
⇒ application migration
⇒ tenant-specific processing

• P4 and eBPF are well-established languages for programmable packet
processing

⇒ P4: restricted, simple language, optimized for high performance
⇒ eBPF: JIT compiled, more high-level language features

• Both languages bring advantages for specific use-cases
⇒ eBPF programs as well-defined API for P4 externs to extend functionality

M. Simon — Dynamic eBPF in P4 2

Dynmiac eBPF in P4

eBPF
externeBPF

extern

Packet

eBPF
Pre-

processor

Parser

Match-Action
Ingress

eBPF
Mid-

processor

Traffic
Manager

Match-Action
Egress

Deparser

eBPF
Post-

processor

eBPF
extern

Packet

P4 Pipeline

Data Plane

1

• Extension of P4 pipeline with updatable eBPF modules
• Fixed position
• Extern

• Allows runtime re-programmability
• Exchange using pre-compiled byte code
• JIT compiled to machine code

• Extends P4 functionality with well-defined API

M. Simon — Dynamic eBPF in P4 3

Dynamic modes

Static

• Fixed, non-changeable functionality

Pre-defined

• Pre-implemented, fixed set of functionality
• Defined before initialization, switchable during runtime

Extensible

• New functionality is sent as source or byte code
• JIT compiled and bound during runtime

M. Simon — Dynamic eBPF in P4 4

Related Work

Reprogrammable P4:

• Das et al., ActiveRMT [1]: Instruction set in P4 allowing changegable functionality
• Xing et al., FlexCore [6]: Runtime partial reprogrammable switch architecture
• Feng et al., In-situ Programmability Data Plane [3]: Switch architecture and reconfigurable P4 (rP4) for runtime

updates

⇒ single-language P4 approaches

P4/eBPF:

• P4 to eBPF [4]: Translation of P4 program to eBPF [4]

M. Simon — Dynamic eBPF in P4 5

Implementation

• Implementation for software target T4P4S [5]
• eBPF execution using DPDK rte_bpf library

• batched tx/rx eBPF callback execution for fixed position
• non-batched execution for flexible externs

• User space eBPF execution
• Optional BLAKE3-based MACs ensuring authenticity of code updates

M. Simon — Dynamic eBPF in P4 6

Evaluation
Overhead of eBPF execution at different positions (Throughput)

baseline pre mid post extern extern_pkt
0

1

2

3

4

5
4.46

4.16 4.12
3.87 3.96

3.55

3.89
4.19 4.16 4.19

3.34
3.03

3.53

3.20
3.47

T
hr

ou
gh

pu
t

[M
pp

s]

dummy
filter
change Three programs for basic overhead:

• dummy : returns 0
• filter : filters for one UDP port and IP

address
• change: changes a header field

Cost model:

C =
fCPU

rtestbase
−

fcpu

rbaseline

M. Simon — Dynamic eBPF in P4 7

Evaluation
Overhead of eBPF execution at different positions (modeled per-packet CPU cycles)

baseline pre mid post extern extern_pkt
0

50

100

150

200

250

36 41

75
62

127

72

32 35 32

165

233

130

195

142

∆
C

PU
cy

cl
es

dummy
filter
change Three programs for basic overhead:

• dummy : returns 0
• filter : filters for one UDP port and IP

address
• change: changes a header field

Cost model:

C =
fCPU

rtestbase
−

fcpu

rbaseline

M. Simon — Dynamic eBPF in P4 8

Evaluation
Median costs of dynamic updates—ten runs (100 Mbit/s)

pre-defined eBPF byte code authenticated
0
25
50
75
100
125
150
175
200

168

109

174

127

180

130
La
te
nc
y
[µ
s]

pre all extern

1

⇒ Update of fixed-position functionality more expensive

⇒ Dynamic eBPF byte code installation at reasonable costs

⇒ Authentication possible

M. Simon — Dynamic eBPF in P4 9

Conclusion

• eBPF offers fixed API for P4 externs
• eBPF hardware offloading solutions exist
• eBPF execution within P4 allows additional applications
• Functionality can be updated during runtime (200 µs)

Read the paper if you want more information about:
• Security considerations
• Discussion of different processor positions
• Detailed analysis of program change

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Simon et al.

0 20 40 60 80
0

100

200

La
te
nc
y
[µ
s]

a) memory

0 20 40 60 80
0

2

4

·104
b) source

before
after
dropped
change

0 20 40 60 80
0

100

200

c) prog

0 20 40 60 80
0

100

200

Experiment Time [ms]

La
te
nc
y
[µ
s]

0 20 40 60 80
0

2

4

·104

Experiment Time [ms]
0 20 40 60 80

0

100

200

Experiment Time [ms]

1)
pr

e
2)

ex
te
rn

1

Figure 4: Latencies before, during, and after change packet

memory prog auth
0
25
50
75
100
125
150
175
200

168

109

174

127

180

130

La
te
nc
y
[µ
s]

pre all extern

1

Figure 5: Latency of change packet (median as number)

eBPF is already performed on SmartNICs [3]. Implementing externs
inside the P4 pipeline becomes more challenging due to the fixed
clock rates between the pipeline stages. Conditional eBPF execution
would likely not result in a performance gain for the packets that
do not use the extern. Instead, the latencies are likely to be constant,
independent of the executed control flow of each packet [18]. An-
other difficulty is to synchronize the execution times required for
each stage. For that, the existing validators for eBPF guaranteeing
maximum cycle counts can help. The same requirements hold for
extensible updates, and maximum cycles have to be defined. Again,
validators can help calculate maximum cycles. This requirement is
more relaxed in software targets, i.e., run-to-completion targets.

eBPF helps ease runtime adaptability for hardware and software
targets. P4 is a domain-specific language designed for packet pro-
cessing exclusively; therefore, its execution can be optimized in
hardware targets. The results show that providing new function-
ality by distributing its source code is not feasible. Conversely, a
natively compiled binary can only be used on one specific platform.
As eBPF can be distributed as platform-independent byte code and,
as the results show, be installed in a timely manner, it is well-suited

to enable such mechanisms. The same binary can be used for all
targets, hardware, or software. The JIT compilation unleashes full
performance, optimizing it for the underlying machine architecture.

7 Conclusion
We discussed, implemented, and evaluated different approaches
to offload eBPF execution within P4. The overhead is smaller for
fixed-position components than for flexible externs. Fixed-position
components are likely easier to integrate into hardware targets.
However, externs are more flexible in their usage. For dynamic
changes, the fastest option is to activate pre-defined eBPF pro-
grams. However, the more powerful extensible updates, relying on
eBPF binaries, are feasible. Dynamic updates allow an interrupt
free service of the network. A dynamic network function can be
implemented and secured, leveraging authenticated updates. On
the other hand, sending dynamic updates using the source code
proved impractical due to the significant compilation overhead,
which eventually causes packet loss.

The results demonstrate that eBPF execution with dynamic and
seamless updates is possible, enabling a variety of new applications.
The source code of our implementaion is available on GitHub [26].

Acknowledgments
The authors thank Timon Tsiolis for his contributions and the
fruitful discussions, and the reviewers for their valuable feedback.
This work is partially funded by the European Union’s Horizon 2020
research and innovation programme (grant agreement no. SLICES-
PP 101079774 and GreenDIGIT 101131207). The German Federal
Ministry of Education and Research (BMBF) supported our work
under the projects 6G-life (16KISK002) and 6G-ANNA (16KISK107)
as well as the German Research Foundation (DFG) as part of the
HyperNIC (CA595/13-1) project.

M. Simon — Dynamic eBPF in P4 10

Bibliography

[1] R. Das and A. C. Snoeren.
Memory management in activermt: Towards runtime-programmable switches.
In Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM ’23, page 10431059, New York, NY, USA, 2023. Association for Computing
Machinery.

[2] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
Moongen: A scriptable high-speed packet generator.
In K. Cho, K. Fukuda, V. S. Pai, and N. Spring, editors, Proceedings of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo, Japan, October
28-30, 2015, pages 275–287. ACM, 2015.

[3] Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun, Y. Wan, and B. Liu.
Enabling in-situ programmability in network data plane: From architecture to language.
In A. Phanishayee and V. Sekar, editors, 19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022, Renton, WA, USA, April
4-6, 2022, pages 635–649. USENIX Association, 2022.

[4] p4lang.
GitHub p4c/backends/ebpf - eBPF Backend, 2024.
Last accessed: 2024-05-24.

[5] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki.
T4P4S: a target-independent compiler for protocol-independent packet processors.
In IEEE 19th International Conference on High Performance Switching and Routing, HPSR 2018, Bucharest, Romania, June 18-20, 2018, pages 1–8. IEEE,
2018.

[6] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy, and A. Chen.
Runtime programmable switches.
In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages 651–665, Renton, WA, Apr. 2022. USENIX Association.

M. Simon — Dynamic eBPF in P4 11

BACKUP
Multi-core throughputs

BACKUP

M. Simon — Dynamic eBPF in P4 12

BACKUP

baseline pre mid post extern extern_pkt
0

2

4

6

8

10

12

4.46

8.83

11.56

4.12

8.14

11.21

3.55

6.95

9.53

4.16

8.23

11.22

3.03

5.97

8.23

3.20

6.33

8.58
T

hr
ou

gh
pu

t
[M

pp
s] 1 core

2 cores
3 cores

M. Simon — Dynamic eBPF in P4 13

BACKUP
Dynamic eBPF in P4

Packet

eBPF
Pre-

processor

Parser

Match-Action
Ingress

eBPF
Mid-

processor

Traffic
Manager

Match-Action
Egress

Deparser

eBPF
Post-

processor

Packet

P4 Pipeline

Data Plane

set_program()

1

Fixed position
• Pre-, Mid-, or Postprocessor
• Processes every packet
• Access to whole packet
• Potentially easier implementation
• E.g., prefilter, preprocessing, hashing/crypto

M. Simon — Dynamic eBPF in P4 14

BACKUP
Dynamic eBPF in P4

eBPF
externeBPF

extern

Packet

Parser

Match-Action
Ingress

Traffic
Manager

Match-Action
Egress

Deparser

eBPF
extern

Packet

P4 Pipeline

Data Plane

set_program()

execute_packet()

execute()

1

Extern
• Flexible position as P4 extern
• Conditional execution
• Return value usable
• Access to whole packet or restricted to selected header fields

M. Simon — Dynamic eBPF in P4 15

BACKUP
Setup

DuT LoadGen
Ê

É

Ê

É

Timestamper

Ê Ê

1

DuT
• Intel Xeon D-1518 2.2 GHz, 32 RAM
• Latency optimized T4P4S → batch size of one

LoadGen
• MoonGen [2] is used to generate traffic
• Packet size 84 B

Timestamper

• Packet streams duplicated using optical splitter
• Timestamps each packet incoming packet
• Resolution: 12.5 ns

M. Simon — Dynamic eBPF in P4 16

BACKUP
Costs of dynamic updates—single run (100 Mbit/s)

0 20 40 60 80
0

100

200

La
te
nc
y
[µ
s]

a) pre-defined

0 20 40 60 80
0

2

4

·104
b) C source

before
after
dropped
change

0 20 40 60 80
0

100

200

c) eBPF byte code

0 20 40 60 80
0

100

200

Experiment Time [ms]

La
te
nc
y
[µ
s]

0 20 40 60 80
0

2

4

·104

Experiment Time [ms]
0 20 40 60 80

0

100

200

Experiment Time [ms]

1)
pr

e
2)

ex
te
rn

1

⇒ eBPF byte code swapping during runtime possible without packet loss
M. Simon — Dynamic eBPF in P4 17

	Motivation
	Dynmiac eBPF in P4
	Dynamic modes
	Related Work
	Implementation
	Evaluation
	Conclusion
	Bibliography
	BACKUP

