
Towards Functional

Verification of eBPF Programs

Dana Lu, Boxuan Tang,
Michael Paper and Marios Kogias

eBPF ‘24 Workshop

August 4, 2024

1

eBPF Deployed in Important Places

2

eBPF Programs May Be Written By Others

eBPF Marketplaces AI Code Generation

3

4

There is a need to verify the behaviour of eBPF programs

5

Safety Functionality

Verifier

● No unsafe memory access

● Termination

● Return value

● Side effects

Verification of Individual Programs is Insufficient

6

Behaviour of eBPF Programs is highly dependent on external interactions

Verification of Individual Programs is Insufficient

7

Behaviour of eBPF Programs is highly dependent on external interactions

BPF Maps

Contents

XDP Firewall Maps

Valid

Packet

Application waiting

for packet

8

XDP Firewall Maps

Valid

Packet

Application waiting

for packet

9

XDP Firewall Maps

Valid

Packet
What should I do

with this packet?

Application waiting

for packet

10

XDP Firewall Maps

Valid

Packet Drop it!

Application waiting

for packet

11

XDP Firewall Maps

Valid

Packet

Application waiting

for packet

Where’s my

packet?

12

XDP Firewall Maps

Valid

Packet

Application waiting

for packet

Where’s my

packet?

Problem: maps

influence the

behaviour of

programs

13

Verification of Individual Programs is Insufficient

14

Behaviour of eBPF Programs is highly dependent external interactions

BPF Maps

Contents

Other eBPF

Programs

Firewall
NAT

Internal

Address

External

Address

Blacklist on

Internal
Addresses

External

Packet

15

Firewall
NAT

Internal

Address

External

Address

Blacklist on

Internal
Addresses

External

Packet

Problem: the ordering of programs can

change the behaviour
16

17

Also important to analyse a program’s external interactions

Introducing DRACO

● Verify behaviour of individual eBPF programs against a specification format

● Analyse how eBPF program’s external interactions affects program behaviour

*Initially focus on XDP programs

18

DRACO Insight

● Loaded eBPF programs have to pass the kernel verifier

● Bounded number of execution paths

● Ideal for Exhaustive Symbolic Execution (ESE)

● Avoids path explosion

19

Symbolic Execution

● Symbolic Execution is a technique to explore possible execution paths in a

program
● Path explosion from branching and loops

● KLEE is a Symbolic Execution Engine on the LLVM level

20

DRACO: Verifying Individual Programs

● External Specifications

● Integrated Specifications

21

Integrated Specifications

● Embedded throughout the eBPF program

● Temporal assertions across two points of the program
○ Where the assertion is located

○ When the program terminates

● ESE in KLEE explores and makes relevant assertions in all paths

22

Integrated Specification Examples

23

BPF_ASSERT_CONSTANT

asserts a memory location
remains constant

24

BPF_ASSERT_IF_ACTION_THEN_EQ

asserts that if an XDP action is returned

the given memory location must not be

equal to the given value

BPF_ASSERT_RETURN asserts that

the given XDP action must be returned

Read paper
for more

examples

Driver Program for Verifying Integrated Specifications

25

1. System of arrays is declared by driver program

2. Relevant Information is enqueued onto arrays when

execution passes through assertion:

memory locations, sizes, bytes, return values

Driver Program for Verifying Integrated Specifications

26

3. When program terminates, go through enqueued assertions

Return value is XDP DROP?

Yes No

*0x00aa3 == 6?

Yes No

● Executable program written in any language compliable to LLVM

● Implement the same functionality as the eBPF program
○ But not the same safety and performance requirements

● ESE in KLEE to verify program against specification

● Specification can be either full or partial
○ Return value

○ Changes to BPF Maps

○ Changes to network packet

External Specification

27

Verifier

Read paper

for details

DRACO: Analysing Program Interactions

● Determine if the order of execution of two eBPF programs matters

● Identify dependencies between BPF maps

● Identify how BPF map contents affects program branching

28

Checking if Order of Execution Matters

29

● BPF Map and Packet Data

● Written to by both programs or

Written to by one program and read by the other

Firewall
NAT

Internal

Address

External

Address

Blacklist on

Internal
Addresses

External

Packet

IP Source Address

define dso_local i32 @ xdp_prog(%struct.xdp_md* %ctx) #5 section "xdp_
XDP " !dbg !801 {
...
%3 = load %struct.xdp_md*, %struct.xdp_md** %ctx.addr, align 8
%data2 = getelementptr inbounds %struct.xdp_md, %struct.xdp_md* %3,

i32 0, i32 0
%4 = load i32, i32* %data2, align 4, !dbg !814
%conv3 = zext i32 %4 to i64
%5 = inttoptr i64 %conv3 to i8
store i8* %5, i8** %data, align 8

}

30

Checking if Order of Execution Matters

Extend KLEE to:

For every path,

1. Check if memory location is BPF map / network packet

2. Add to ReadSet / WriteSet accordingly

3. Check if there is any overlap in both programs’ sets

DRACO: Analysing Program Interactions

● Determine if the order of execution of two eBPF programs matters

● Identify dependencies between BPF maps

● Identify how BPF map contents affects program branching

31

Read paper

for details

Evaluation Criteria

● Specification LOC

● Time

32

33

Evaluation of DRACO Verification

Read paper

for details

Concluding Remarks

● Verified eBPF programs are suitable for further verification and analysis using

symbolic execution

● Verification can be integrated as part of deployment pipeline

● eBPF programs’ behaviour are dependent on external interactions, it is

beneficial to analyse the interactions of eBPF programs during development

34

Thank you!

	Slide 1: Towards Functional Verification of eBPF Programs
	Slide 2: eBPF Deployed in Important Places
	Slide 3: eBPF Programs May Be Written By Others
	Slide 4
	Slide 5
	Slide 6: Verification of Individual Programs is Insufficient
	Slide 7: Verification of Individual Programs is Insufficient
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Verification of Individual Programs is Insufficient
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Introducing DRACO
	Slide 19: DRACO Insight
	Slide 20: Symbolic Execution
	Slide 21: DRACO: Verifying Individual Programs
	Slide 22: Integrated Specifications
	Slide 23: Integrated Specification Examples
	Slide 24
	Slide 25: Driver Program for Verifying Integrated Specifications
	Slide 26: Driver Program for Verifying Integrated Specifications
	Slide 27: External Specification
	Slide 28: DRACO: Analysing Program Interactions
	Slide 29: Checking if Order of Execution Matters
	Slide 30: Checking if Order of Execution Matters
	Slide 31: DRACO: Analysing Program Interactions
	Slide 32: Evaluation Criteria
	Slide 33: Evaluation of DRACO Verification
	Slide 34: Concluding Remarks

