Towards Functional
Verification of eBPF Programs

Dana Lu, Boxuan Tanag,
Michael Paper and Marios Kogias

IMPERIAL eBPF 24 Workshop n; {

August 4, 2024

1

eBPF Deployed in Important Places

O -
gge cilium ¥ Falco

eBPF Programs May Be Written By Others

LI THELINUX FOUNDATION

75 Copilot

0 L3AF

eBPF Marketplaces Al Code Generation

There is a need to verify the behaviour of eBPF programs

aeBPF Verifier

v X

Safety Functionality

® No unsafe memory access ® Return value
® Termination ® Side effects

Verification of Individual Programs is Insufficient

Behaviour of eBPF Programs is highly dependent on external interactions

Verification of Individual Programs is Insufficient

Behaviour of eBPF Programs is highly dependent on external interactions

—

BPF Maps
Contents

XDP Firewall

Application waiting
for packet

XDP Firewall

Application waiting
for packet

XDP Firewall

What should | do
with this packet?

Application waiting
for packet

10

XDP Firewall

Drop it!

Application waiting
for packet

11

XDP Firewall

Where’s my

packet? &

Application waiting
for packet

12

Problem: maps
influence the
behaviour of
programs

XDP Firewall

Where’s my

packet? &

Application waiting
for packet

13

Verification of Individual Programs is Insufficient

Behaviour of eBPF Programs is highly dependent external interactions

T

BPF Maps Other eBPF
Contents Programs

14

External
Packet

NAT

External
Address

Firewall

\ 4

15

Firewall

External
Packet

Problem: the ordering of programs can

N External
Address

NAT

change the behaviour

16

Also important to analyse a program’s external interactions

17

Introducing DRACO

e Verify behaviour of individual eBPF programs against a specification format

e Analyse how eBPF program’s external interactions affects program behaviour

*Initially focus on XDP programs

18

DRACO Insight

e |Loaded eBPF programs have to pass the kernel verifier

® Bounded number of execution paths
® |deal for Exhaustive Symbolic Execution (ESE)

® Avoids path explosion

19

Symbolic Execution

e Symbolic Execution is a technique to explore possible execution paths in a
program
® Path explosion from branching and loops

e KLEE is a Symbolic Execution Engine on the LLVM level

NKAA

20

DRACO: Verifying Individual Programs

e External Specifications

e Integrated Specifications

21

Integrated Specifications

e Embedded throughout the eBPF program

e Temporal assertions across two points of the program

o Where the assertion is located
o When the program terminates

e ESE in KLEE explores and makes relevant assertions in all paths

22

Integrated Specification Examples

ethernet

data ;

sizeof(xethernet));

BPF_ASSERT_CONSTANT
asserts a memory location
remains constant

23

BPF_ASSERT_IF_ACTION_THEN_NEQ(XDP_DROP, &(ip->protocol), _ u8, IPPROTO_TCP);

nh_off +=sizeof(*xip);
if (data + nh_off > data_end)

goto EOP; BPF_ASSERT _IF_ACTION_THEN_EQ
asserts that if an XDP action is returned

the given memory location must not be

if(ip->protocol != IPPROTO_TCP){ equal to the given value
goto EOP;

}

BPF_ASSERT_RETURN(XDP_TX); BPF_ASSERT_RETURN asserts that

the given XDP action must be returned

int key = ip->saddr;
int value = 1;
bpf_map_update_elem(&example_map, &key, &value, 0);

BPF_RETURN (XDP_TX) ; Read paper

for more
examples

EOP:
BPF_RETURN (XDP_DROP) ;

Driver Program for Verifying Integrated Specifications

1. System of arrays is declared by driver program

2. Relevant Information is enqueued onto arrays when
execution passes through assertion:
memory locations, sizes, bytes, return values

25

Driver Program for Verifying Integrated Specifications

3. When program terminates, go through enqueued assertions

THEN_NEQ(XDP_DROP, &(ip->protocol), __u8, IPPROTO_TCP);

Return value is XDP DROP?

4,/\

Yes No

!

*0x00aa3 == 6?\
Yes No

| AN
v N v

X v

External Specification

e Executable program written in any language compliable to LLVM @ @
e Implement the same functionality as the eBPF program

o But not the same safety and performance requirements M
e ESE in KLEE to verify program against specification

e Specification can be either full or partial
o Return value
o Changes to BPF Maps
o Changes to network packet

Read paper
for details

27

DRACO: Analysing Program Interactions

e Determine if the order of execution of two eBPF programs matters

28

Checking if Order of Execution Matters

e BPF Map and Packet Data

e \Written to by both programs or
Written to by one program and read by the other

NAT

Firewall

External External R
Packet Address

\

N IP Source Address

29

Checking if Order of Execution Matters

Extend KLEE to:

For every path,
1. Check if memory location is BPF map / network packet
2. Addto ReadSet/ WriteSet accordingly
3. Check if there is any overlap in both programs’ sets

18* %5

30

DRACO: Analysing Program Interactions

e |dentify dependencies between BPF maps

e |dentify how BPF map contents affects program branching

Read paper
for details

31

Evaluation Criteria

o Specification LOC (:ﬁ)
e liMme

32

Evaluation of DRACO Verification

)

Program | LOC | Type || Spec | Paths | Time

hXDP FW | 686 Full 27 64 6.93s
hXDP FW | 686 Full 18 4 3.45s
Fluvia 156 | Partial 4 23 23.35s
Katran 4244 | Partial 17 10 | 71.24s
CRAB 365 | Assert 20 5 1.90s

Read paper
for details
33

Concluding Remarks

e Verified eBPF programs are suitable for further verification and analysis using
symbolic execution

e \Verification can be integrated as part of deployment pipeline

e eBPF programs’ behaviour are dependent on external interactions, it is
beneficial to analyse the interactions of eBPF programs during development

Thank you!

34

	Slide 1: Towards Functional Verification of eBPF Programs
	Slide 2: eBPF Deployed in Important Places
	Slide 3: eBPF Programs May Be Written By Others
	Slide 4
	Slide 5
	Slide 6: Verification of Individual Programs is Insufficient
	Slide 7: Verification of Individual Programs is Insufficient
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Verification of Individual Programs is Insufficient
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Introducing DRACO
	Slide 19: DRACO Insight
	Slide 20: Symbolic Execution
	Slide 21: DRACO: Verifying Individual Programs
	Slide 22: Integrated Specifications
	Slide 23: Integrated Specification Examples
	Slide 24
	Slide 25: Driver Program for Verifying Integrated Specifications
	Slide 26: Driver Program for Verifying Integrated Specifications
	Slide 27: External Specification
	Slide 28: DRACO: Analysing Program Interactions
	Slide 29: Checking if Order of Execution Matters
	Slide 30: Checking if Order of Execution Matters
	Slide 31: DRACO: Analysing Program Interactions
	Slide 32: Evaluation Criteria
	Slide 33: Evaluation of DRACO Verification
	Slide 34: Concluding Remarks

