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eBPF Deployed in Important Places
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eBPF Programs May Be Written By Others

eBPF Marketplaces AI Code Generation
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There is a need to verify the behaviour of eBPF programs



5

Safety Functionality

Verifier

● No unsafe memory access

● Termination

● Return value

● Side effects



Verification of Individual Programs is Insufficient 
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Behaviour of eBPF Programs is highly dependent on external interactions



Verification of Individual Programs is Insufficient 
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Behaviour of eBPF Programs is highly dependent on external interactions

BPF Maps 

Contents
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XDP Firewall Maps
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XDP Firewall Maps
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XDP Firewall Maps
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XDP Firewall Maps
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XDP Firewall Maps
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Problem: maps 
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programs
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Verification of Individual Programs is Insufficient 
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Behaviour of eBPF Programs is highly dependent external interactions

BPF Maps 

Contents

Other eBPF 

Programs
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Problem: the ordering of programs can 

change the behaviour
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Also important to analyse a program’s external interactions



Introducing DRACO

● Verify behaviour of individual eBPF programs against a specification format

● Analyse how eBPF program’s external interactions affects program behaviour

*Initially focus on XDP programs
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DRACO Insight

● Loaded eBPF programs have to pass the kernel verifier

● Bounded number of execution paths

● Ideal for Exhaustive Symbolic Execution (ESE)

● Avoids path explosion
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Symbolic Execution

● Symbolic Execution is a technique to explore possible execution paths in a 

program
● Path explosion from branching and loops

● KLEE is a Symbolic Execution Engine on the LLVM level
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DRACO: Verifying Individual Programs

● External Specifications

● Integrated Specifications
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Integrated Specifications

● Embedded throughout the eBPF program

● Temporal assertions across two points of the program
○ Where the assertion is located

○ When the program terminates

● ESE in KLEE explores and makes relevant assertions in all paths
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Integrated Specification Examples
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BPF_ASSERT_CONSTANT 

asserts a memory location 
remains constant
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BPF_ASSERT_IF_ACTION_THEN_EQ

asserts that if an XDP action is returned 

the given memory location must not be 

equal to the given value

BPF_ASSERT_RETURN asserts that 

the given XDP action must be returned

Read paper 
for more 

examples



Driver Program for Verifying Integrated Specifications
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1. System of arrays is declared by driver program

2. Relevant Information is enqueued onto arrays when 

execution passes through assertion:

memory locations, sizes, bytes, return values



Driver Program for Verifying Integrated Specifications
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3. When program terminates, go through enqueued assertions

Return value  is XDP DROP?

Yes No

*0x00aa3 == 6?

Yes No



● Executable program written in any language compliable to LLVM

● Implement the same functionality as the eBPF program
○ But not the same safety and performance requirements

● ESE in KLEE to verify program against specification

● Specification can be either full or partial
○ Return value

○ Changes to BPF Maps

○ Changes to network packet

External Specification
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Verifier

Read paper 

for details



DRACO: Analysing Program Interactions

● Determine if the order of execution of two eBPF programs matters

● Identify dependencies between BPF maps

● Identify how BPF map contents affects program branching

28



Checking if Order of Execution Matters
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● BPF Map and Packet Data

● Written to by both programs or

Written to by one program and read by the other

Firewall
NAT

Internal 

Address

External 

Address

Blacklist on 

Internal 
Addresses

External 

Packet

IP Source Address



define dso_local i32 @ xdp_prog(%struct.xdp_md* %ctx) #5 section "xdp_ 
XDP " !dbg !801 {
...
%3 = load %struct.xdp_md*, %struct.xdp_md** %ctx.addr, align 8         
%data2 = getelementptr inbounds %struct.xdp_md, %struct.xdp_md* %3, 

i32 0, i32 0  
%4 = load i32, i32* %data2, align 4, !dbg !814
%conv3 = zext i32 %4 to i64
%5 = inttoptr i64 %conv3 to i8
store i8* %5, i8** %data, align 8

}
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Checking if Order of Execution Matters

Extend KLEE to:

For every path,

1. Check if memory location is BPF map / network packet

2. Add to ReadSet / WriteSet accordingly

3. Check if there is any overlap in both programs’ sets



DRACO: Analysing Program Interactions

● Determine if the order of execution of two eBPF programs matters

● Identify dependencies between BPF maps

● Identify how BPF map contents affects program branching

31

Read paper 

for details



Evaluation Criteria

● Specification LOC

● Time
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Evaluation of DRACO Verification

Read paper 

for details



Concluding Remarks

● Verified eBPF programs are suitable for further verification and analysis using 

symbolic execution

● Verification can be integrated as part of deployment pipeline

● eBPF programs’ behaviour are dependent on external interactions, it is 

beneficial to analyse the interactions of eBPF programs during development
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Thank you!
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