Towards Functional
Verification of eBPF Programs

Dana Lu, Boxuan Tanag,
Michael Paper and Marios Kogias

IMPERIAL eBPF 24 Workshop n; {

August 4, 2024

1



eBPF Deployed in Important Places
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eBPF Programs May Be Written By Others
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There is a need to verify the behaviour of eBPF programs




aeBPF Verifier
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Safety Functionality

® No unsafe memory access ® Return value
® Termination ® Side effects



Verification of Individual Programs is Insufficient

Behaviour of eBPF Programs is highly dependent on external interactions
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XDP Firewall
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for packet




XDP Firewall

Application waiting
for packet




XDP Firewall

What should | do
with this packet?

Application waiting
for packet
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XDP Firewall

Drop it!

Application waiting
for packet
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XDP Firewall

Where’s my

packet? &

Application waiting
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Problem: maps
influence the
behaviour of
programs
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Verification of Individual Programs is Insufficient

Behaviour of eBPF Programs is highly dependent external interactions
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Firewall

External
Packet

Problem: the ordering of programs can

N External
Address

NAT

change the behaviour
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Also important to analyse a program’s external interactions
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Introducing DRACO

e Verify behaviour of individual eBPF programs against a specification format

e Analyse how eBPF program’s external interactions affects program behaviour

*Initially focus on XDP programs
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DRACO Insight

e |Loaded eBPF programs have to pass the kernel verifier

® Bounded number of execution paths
® |deal for Exhaustive Symbolic Execution (ESE)

® Avoids path explosion
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Symbolic Execution

e Symbolic Execution is a technique to explore possible execution paths in a
program
® Path explosion from branching and loops

e KLEE is a Symbolic Execution Engine on the LLVM level

NKAA
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DRACO: Verifying Individual Programs

e External Specifications

e Integrated Specifications
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Integrated Specifications

e Embedded throughout the eBPF program

e Temporal assertions across two points of the program

o Where the assertion is located
o When the program terminates

e ESE in KLEE explores and makes relevant assertions in all paths
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Integrated Specification Examples

ethernet

data ;

sizeof(xethernet));

BPF_ASSERT_CONSTANT
asserts a memory location
remains constant
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BPF_ASSERT_IF_ACTION_THEN_NEQ(XDP_DROP, &(ip->protocol), _ u8, IPPROTO_TCP);

nh_off +=sizeof(*xip);
if (data + nh_off > data_end)

goto EOP; BPF_ASSERT _IF_ACTION_THEN_EQ
asserts that if an XDP action is returned

the given memory location must not be

if(ip->protocol != IPPROTO_TCP){ equal to the given value
goto EOP;

}

BPF_ASSERT_RETURN(XDP_TX); BPF_ASSERT_RETURN asserts that

the given XDP action must be returned

int key = ip->saddr;
int value = 1;
bpf_map_update_elem(&example_map, &key, &value, 0);

BPF_RETURN (XDP_TX) ; Read paper

for more
examples

EOP:
BPF_RETURN (XDP_DROP) ;




Driver Program for Verifying Integrated Specifications

1. System of arrays is declared by driver program

2. Relevant Information is enqueued onto arrays when
execution passes through assertion:
memory locations, sizes, bytes, return values
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Driver Program for Verifying Integrated Specifications

3. When program terminates, go through enqueued assertions

THEN_NEQ(XDP_DROP, &(ip->protocol), __u8, IPPROTO_TCP);

Return value is XDP DROP?

4,/\

Yes No

!

*0x00aa3 == 6?\
Yes No

| AN
v N v

X v




External Specification

e Executable program written in any language compliable to LLVM @ @
e Implement the same functionality as the eBPF program

o But not the same safety and performance requirements M
e ESE in KLEE to verify program against specification

e Specification can be either full or partial
o Return value
o Changes to BPF Maps
o Changes to network packet

Read paper
for details
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DRACO: Analysing Program Interactions

e Determine if the order of execution of two eBPF programs matters
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Checking if Order of Execution Matters

e BPF Map and Packet Data

e \Written to by both programs or
Written to by one program and read by the other

NAT

Firewall

External External R
Packet Address

\

N IP Source Address
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Checking if Order of Execution Matters

Extend KLEE to:

For every path,
1. Check if memory location is BPF map / network packet
2. Addto ReadSet/ WriteSet accordingly
3. Check if there is any overlap in both programs’ sets

18* %5
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DRACO: Analysing Program Interactions

e |dentify dependencies between BPF maps

e |dentify how BPF map contents affects program branching

Read paper
for details
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Evaluation Criteria

o Specification LOC (:ﬁ)
e liMme
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Evaluation of DRACO Verification

)

Program | LOC | Type || Spec | Paths | Time

hXDP FW | 686 Full 27 64 6.93s
hXDP FW | 686 Full 18 4 3.45s
Fluvia 156 | Partial 4 23 23.35s
Katran 4244 | Partial 17 10 | 71.24s
CRAB 365 | Assert 20 5 1.90s

Read paper
for details
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Concluding Remarks

e Verified eBPF programs are suitable for further verification and analysis using
symbolic execution

e \Verification can be integrated as part of deployment pipeline

e eBPF programs’ behaviour are dependent on external interactions, it is
beneficial to analyse the interactions of eBPF programs during development

Thank you!
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