Eliminating eBPF Tracing
Overhead on Untraced
Processes

Milo Craun, Khizar Hussain, Uddhav Gautam, Zhengjie Ji,
Tanuj Rao, and Dan Williams




eBPF For Tracing

- eBPF used for dynamic system
tracing and observability
- Attach to Tracing Hookpoints

- tracepoints and kprobes
- Tracing Hookpoint Installer

changes kernel text pages to

install the program
- patching no-op for tracepoint
- installing trap/interrupt instruction for
kprobe

eBPF Program Attachment

Y

Tracing
Hookpoint
Installer

Kernel

v

v

Kernel Memory




Per-process Tracing with eBPF

- We find current tracing is coarse grained
- once activated, hookpoint triggers for all processes
- Need for per-process tracing

- Want to trace a single application or a set of applications
- Not natively supported



Approaches to Per-process



Approaches to Per-process

Kernel
Code




Approaches to Per-process

Kernel Tracing
———) Hookpoint

Code Handler




Approaches to Per-process

Tracing

Kernel —— ; : eBPF
Code Hﬁgﬁggpt System




Approaches to Per-process

Tracing
Kernel —— . : eBPF : eBPF
Code Hﬁgﬁggpt System Program




Approaches to Per-process

Kernel
Code

Tracing
Hookpoint
Handler

eBPF
System

eBPF
Program

Kernel
Code




Approaches to Per-process

Kernel Tracing
————) Hookpoint
Code
Handler
Pre-eBPF

Filter for PID before
BPF program
- Not supported by

kernel

eBPF
System

eBPF
Program

Kernel
Code




Approaches to Per-process

eBPF
Program

Code OOKPOI System
Handler
Pre-eBPF In-eBPF
Filter for PID before - Filter for PID in BPF
BPF program program

- Not supported by

kernel

- Used by bpftrace

Kernel
Code




Approaches to Per-process

Tracing
Kernel —— . : eBPF : eBPF : Kernel
Code HHookpomt System Program Code
andler
Pre-eBPF In-eBPF Post-eBPF
Filter for PID before - Filter for PID in BPF - Filter for PID after data
BPF program program collection

- Not supported by
kernel

- Used by bpftrace

- Intuitively makes sense




Overheads of Per-process Tracing

- Filtering approaches cause

untraced overhead

overhead on processes that are
not traced

- Performed experiments to
measure the overhead



Overheads of Per-process Tracing

- Filtering approaches cause

untraced overhead

- overhead on processes that are
not traced

- Performed experiments to
measure the overhead

Time (ns)

Time (ns)

600 -

N
o
o

=R
o wu
o o
o o

500 A

read()

baseline pre-eBPF in-eBPF post-eBPF

sendmsg()

baseline pre-eBPF in-eBPF post-eBPF
Per-Process Tracing Approach




Overheads of Per-process Tracing

- Filtering approaches cause

untraced overhead

- overhead on processes that are
not traced

- Performed experiments to
measure the overhead

- Memcached Throughput

- pre-eBPF: 1.5% decrease
- in-eBPF: 2.7% decrease

Time (ns)

Time (ns)

600 -

N
o
o

=R
o wu
o o
o o

500 A

read()

baseline pre-eBPF in-eBPF post-eBPF

sendmsg()

baseline pre-eBPF in-eBPF post-eBPF
Per-Process Tracing Approach




Filtering approaches cause

untraced overhead

- overhead on processes that are
not traced

Performed experiments to
measure the overhead

Memcached Throughput

- pre-eBPF: 1.5% decrease
- in-eBPF: 2.7% decrease

Trends seem to indicate more
eBPF programs attached

Time (ns)

Time (ns)

Overheads of Per-process Tracing

1400 A
1200 -
1000 A
800 -
600 -
400 4

—— pre-eBPF
—— in-eBPF

0 1|0 2I0 30 40 50
Number of Attached eBPF Programs to One Hookpoint

3000 A
2500 4
2000 A
1500 A
1000 A

500 4

(I) é 4 6 8 10 12 14
Number of Attached Hookpoints




How can we achieve per-process tracing
without untraced overhead?



Key Insights

- Unattached tracing hookpoints are fast

tracepoints are optimized
kprobes are not installed

- Attaching a tracing program requires writes to kernel text pages



Per-process Kernel Views

Give each process its own
view of the kernel

Allows for per-process sets
of kernel hookpoints

Modify tracing hookpoint
installers to communicate
with a kernel view manager

eBPF Program Attach Time

PID/Attach
Metadata
User
Rernel Attach .-
\ 4 o 7 P1
. P2

1 cacing Kernel View %

Hookpoint W
Manager Per-process kernel
Installer
page tables




Kernel View Manager

- Creates copies of kernel text
pages

- Modifies process kernel page
tables to map copies of
pages

- Installs tracing program

- Provides private hookpoint
state

Kernel View Manager Kernel Page Table Mappings

Untraced Processes

Traced Process with
eBPF Program 1

Traced Process with
eBPF Program 2

Hookpoint
Text

Hookpoint
State

Modified
Hookpoint
Text

eBPF eBPF
Program 1 | Program 2

Private
Hookpoint
State 1

Private
Hookpoint
State 2

Physical Memory




Open Questions

1. Tracing Hookpoint State

a. What does this consist of? How can we manage it?



Open Questions

1. Tracing Hookpoint State

a. What does this consist of? How can we manage it?

2. Issues with virtual mappings
a. What does fork() do? Implications for other subsystems?



Open Questions

1. Tracing Hookpoint State

a. What does this consist of? How can we manage it?

2. Issues with virtual mappings
a. What does fork() do? Implications for other subsystems?

3. Wasted memory

a. How much waste does creating copies of kernel pages incur?



Open Questions

1. Tracing Hookpoint State

a. What does this consist of? How can we manage it?

2. Issues with virtual mappings
a. What does fork() do? Implications for other subsystems?

3. Wasted memory
a. How much waste does creating copies of kernel pages incur?

4. Overhead of multiple kernel views
a. What are the costs associated with changing page tables?



Extending Kernel Views

1. Different Granularities
a. Other extension use cases need different granularity
b. Per-flow kernel views
c. Need to be able to identify and manage different network flows



Extending Kernel Views

1. Different Granularities
a. Other extension use cases need different granularity
b. Per-flow kernel views
c. Need to be able to identify and manage different network flows

2. Increased Kernel State Management Complexity

a. Ensure right kernel view is loaded when events occur
b. Change kernel view for interrupts
c. Private state for eBPF programs



Takeaways

- ldentified that existing approaches for per-process tracing impose overheads

on untraced processes
- We propose a system that uses virtual memory mappings to eliminate the

overhead on untraced processes
- A kernel view manager gives each process its own view of the kernel



Questions?



