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eBPF For Tracing

- eBPF used for dynamic system
tracing and observability
- Attach to Tracing Hookpoints

- tracepoints and kprobes
- Tracing Hookpoint Installer

changes kernel text pages to

install the program
- patching no-op for tracepoint
- installing trap/interrupt instruction for
kprobe
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Per-process Tracing with eBPF

- We find current tracing is coarse grained
- once activated, hookpoint triggers for all processes
- Need for per-process tracing

- Want to trace a single application or a set of applications
- Not natively supported



Approaches to Per-process
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Approaches to Per-process

Tracing
Kernel —— . : eBPF : eBPF : Kernel
Code HHookpomt System Program Code
andler
Pre-eBPF In-eBPF Post-eBPF
Filter for PID before - Filter for PID in BPF - Filter for PID after data
BPF program program collection

- Not supported by
kernel

- Used by bpftrace

- Intuitively makes sense




Overheads of Per-process Tracing

- Filtering approaches cause

untraced overhead

overhead on processes that are
not traced

- Performed experiments to
measure the overhead



Overheads of Per-process Tracing

- Filtering approaches cause

untraced overhead

- overhead on processes that are
not traced

- Performed experiments to
measure the overhead

Time (ns)

Time (ns)

600 -

N
o
o

=R
o wu
o o
o o

500 A

read()

baseline pre-eBPF in-eBPF post-eBPF

sendmsg()

baseline pre-eBPF in-eBPF post-eBPF
Per-Process Tracing Approach




Overheads of Per-process Tracing

- Filtering approaches cause

untraced overhead

- overhead on processes that are
not traced

- Performed experiments to
measure the overhead

- Memcached Throughput

- pre-eBPF: 1.5% decrease
- in-eBPF: 2.7% decrease

Time (ns)

Time (ns)

600 -

N
o
o

=R
o wu
o o
o o

500 A

read()

baseline pre-eBPF in-eBPF post-eBPF

sendmsg()

baseline pre-eBPF in-eBPF post-eBPF
Per-Process Tracing Approach




Filtering approaches cause

untraced overhead

- overhead on processes that are
not traced

Performed experiments to
measure the overhead

Memcached Throughput

- pre-eBPF: 1.5% decrease
- in-eBPF: 2.7% decrease

Trends seem to indicate more
eBPF programs attached
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How can we achieve per-process tracing
without untraced overhead?



Key Insights

- Unattached tracing hookpoints are fast

tracepoints are optimized
kprobes are not installed

- Attaching a tracing program requires writes to kernel text pages



Per-process Kernel Views

Give each process its own
view of the kernel

Allows for per-process sets
of kernel hookpoints

Modify tracing hookpoint
installers to communicate
with a kernel view manager
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Kernel View Manager

- Creates copies of kernel text
pages

- Modifies process kernel page
tables to map copies of
pages

- Installs tracing program

- Provides private hookpoint
state

Kernel View Manager Kernel Page Table Mappings

Untraced Processes

Traced Process with
eBPF Program 1

Traced Process with
eBPF Program 2

Hookpoint
Text

Hookpoint
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Modified
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Open Questions

1. Tracing Hookpoint State

a. What does this consist of? How can we manage it?
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Open Questions

1. Tracing Hookpoint State

a. What does this consist of? How can we manage it?

2. Issues with virtual mappings
a. What does fork() do? Implications for other subsystems?

3. Wasted memory
a. How much waste does creating copies of kernel pages incur?

4. Overhead of multiple kernel views
a. What are the costs associated with changing page tables?



Extending Kernel Views

1. Different Granularities
a. Other extension use cases need different granularity
b. Per-flow kernel views
c. Need to be able to identify and manage different network flows



Extending Kernel Views

1. Different Granularities
a. Other extension use cases need different granularity
b. Per-flow kernel views
c. Need to be able to identify and manage different network flows

2. Increased Kernel State Management Complexity

a. Ensure right kernel view is loaded when events occur
b. Change kernel view for interrupts
c. Private state for eBPF programs



Takeaways

- ldentified that existing approaches for per-process tracing impose overheads

on untraced processes
- We propose a system that uses virtual memory mappings to eliminate the

overhead on untraced processes
- A kernel view manager gives each process its own view of the kernel



Questions?



