
Eliminating eBPF Tracing
Overhead on Untraced

Processes
Milo Craun, Khizar Hussain, Uddhav Gautam, Zhengjie Ji,

Tanuj Rao, and Dan Williams

eBPF For Tracing

- eBPF used for dynamic system
tracing and observability

- Attach to Tracing Hookpoints
- tracepoints and kprobes

- Tracing Hookpoint Installer
changes kernel text pages to
install the program

- patching no-op for tracepoint
- installing trap/interrupt instruction for

kprobe

Per-process Tracing with eBPF

- We find current tracing is coarse grained
- once activated, hookpoint triggers for all processes

- Need for per-process tracing
- Want to trace a single application or a set of applications
- Not natively supported

Approaches to Per-process

Approaches to Per-process

Kernel
Code

Approaches to Per-process

Kernel
Code

Tracing
Hookpoint
Handler

Approaches to Per-process

Kernel
Code

Tracing
Hookpoint
Handler

eBPF
System

Approaches to Per-process

Kernel
Code

Tracing
Hookpoint
Handler

eBPF
System

eBPF
Program

Approaches to Per-process

Kernel
Code

Tracing
Hookpoint
Handler

eBPF
System

eBPF
Program

Kernel
Code

Approaches to Per-process

Kernel
Code

Tracing
Hookpoint
Handler

eBPF
System

eBPF
Program

Kernel
Code

Pre-eBPF
- Filter for PID before

BPF program
- Not supported by

kernel

Approaches to Per-process

Kernel
Code

Tracing
Hookpoint
Handler

eBPF
System

eBPF
Program

Kernel
Code

Pre-eBPF
- Filter for PID before

BPF program
- Not supported by

kernel

In-eBPF
- Filter for PID in BPF

program
- Used by bpftrace

Approaches to Per-process

Kernel
Code

Tracing
Hookpoint
Handler

eBPF
System

eBPF
Program

Kernel
Code

Pre-eBPF
- Filter for PID before

BPF program
- Not supported by

kernel

In-eBPF
- Filter for PID in BPF

program
- Used by bpftrace

Post-eBPF
- Filter for PID after data

collection
- Intuitively makes sense

Overheads of Per-process Tracing

- Filtering approaches cause
untraced overhead

- overhead on processes that are
not traced

- Performed experiments to
measure the overhead

Overheads of Per-process Tracing

- Filtering approaches cause
untraced overhead

- overhead on processes that are
not traced

- Performed experiments to
measure the overhead

Overheads of Per-process Tracing

- Filtering approaches cause
untraced overhead

- overhead on processes that are
not traced

- Performed experiments to
measure the overhead

- Memcached Throughput
- pre-eBPF: 1.5% decrease
- in-eBPF: 2.7% decrease

Overheads of Per-process Tracing

- Filtering approaches cause
untraced overhead

- overhead on processes that are
not traced

- Performed experiments to
measure the overhead

- Memcached Throughput
- pre-eBPF: 1.5% decrease
- in-eBPF: 2.7% decrease

- Trends seem to indicate more
eBPF programs attached

How can we achieve per-process tracing
without untraced overhead?

Key Insights

- Unattached tracing hookpoints are fast
- tracepoints are optimized
- kprobes are not installed

- Attaching a tracing program requires writes to kernel text pages

Per-process Kernel Views

- Give each process its own
view of the kernel

- Allows for per-process sets
of kernel hookpoints

- Modify tracing hookpoint
installers to communicate
with a kernel view manager

Kernel View Manager

- Creates copies of kernel text
pages

- Modifies process kernel page
tables to map copies of
pages

- Installs tracing program
- Provides private hookpoint

state

Open Questions

1. Tracing Hookpoint State
a. What does this consist of? How can we manage it?

Open Questions

1. Tracing Hookpoint State
a. What does this consist of? How can we manage it?

2. Issues with virtual mappings
a. What does fork() do? Implications for other subsystems?

Open Questions

1. Tracing Hookpoint State
a. What does this consist of? How can we manage it?

2. Issues with virtual mappings
a. What does fork() do? Implications for other subsystems?

3. Wasted memory
a. How much waste does creating copies of kernel pages incur?

Open Questions

1. Tracing Hookpoint State
a. What does this consist of? How can we manage it?

2. Issues with virtual mappings
a. What does fork() do? Implications for other subsystems?

3. Wasted memory
a. How much waste does creating copies of kernel pages incur?

4. Overhead of multiple kernel views
a. What are the costs associated with changing page tables?

Extending Kernel Views

1. Different Granularities
a. Other extension use cases need different granularity
b. Per-flow kernel views
c. Need to be able to identify and manage different network flows

Extending Kernel Views

1. Different Granularities
a. Other extension use cases need different granularity
b. Per-flow kernel views
c. Need to be able to identify and manage different network flows

2. Increased Kernel State Management Complexity
a. Ensure right kernel view is loaded when events occur
b. Change kernel view for interrupts
c. Private state for eBPF programs

Takeaways

- Identified that existing approaches for per-process tracing impose overheads
on untraced processes

- We propose a system that uses virtual memory mappings to eliminate the
overhead on untraced processes

- A kernel view manager gives each process its own view of the kernel

Questions?

