Unsafe kernel extension composition
via BPF program nesting

Siddharth Chintamaneni, Sai Roop Somaraju and Dan Williams

./



Safe extension with BPF

e BPF program loaded into the kernel

e Safety checked with in-kernel static
verifier

e Attached to hook point

e Run on event

e Many use cases:

o Tracing, networking, security, scheduling, ...

o Safety is key!!
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Verifying individual extensions
iIs not enough!!
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Incompleteness of Verification

BPF programs interact
with the kernel through
helper functions or
kfuncs

Other BPF programs
may be attached to
those creating BPF
nesting
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What could go wrong?

e BPF stack checks O USER
KERNEL

o Ensure program does not use more
than 512 bytes of stack

o How deep can new control flow stack
become? [1]

e Deadlock
e Otherissues?

[1] Overflowing the kernel stack with BPF. In Linux Plumbers Conference, Richmond, VA, November 2023. Siddharth
Chintamaneni, Sai Roop Somaraju, and Dan Williams



~ USER

Root cause:

% KERNEL

verifier does not know
enough about composition
of extensions

with kernel and each other




Callgraph-based solution

e Can we teach verifier about
composition?
e Key idea: statically compute

helper/kfunc rooted callgraph
o Compute possible stack usage per node
o Dynamically track changing callgraphs as
extensions are attached and nested
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Key Challenges and Approaches

e How to generate callgraphs of Linux

(@)

Lots of indirect calls

e Idea: limit focus to helper functions to start

o O O O

More tractable than entire kernel

Utilize state-of-the-art type-based inference tools
Eliminate indirect calls in helpers when possible
Focus on common helpers/nesting use cases



Summary

e Safety involves more than just the BPF program
e Unsafe composition with kernel and nested BPF programs
e Callgraph approach can catch such issues
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