
Unsafe kernel extension composition
via BPF program nesting

Siddharth Chintamaneni, Sai Roop Somaraju and Dan Williams

Virginia Tech



Safe extension with BPF

● BPF program loaded into the kernel
● Safety checked with in-kernel static 

verifier
● Attached to hook point
● Run on event
● Many use cases:

○ Tracing, networking, security, scheduling, …

● Safety is key!!

KERNEL

USER



Safe extension with BPF

KERNEL

Verified BPF program

USER● BPF program loaded into the kernel
● Safety checked with in-kernel static 

verifier
● Attached to hook point
● Run on event
● Many use cases:

○ Tracing, networking, security, scheduling, …

● Safety is key!!



Verifying individual extensions 
is not enough!!



Incompleteness of Verification

● BPF programs interact 
with the kernel through 
helper functions or 
kfuncs

KERNEL

Verified BPF program

USER



KERNEL

USER● BPF programs interact 
with the kernel through 
helper functions or 
kfuncs

Incompleteness of Verification



KERNEL

USER● BPF programs interact 
with the kernel through 
helper functions or 
kfuncs

● Other BPF programs 
may be attached to 
those creating BPF 
nesting

Incompleteness of Verification



What could go wrong?

● BPF stack checks
○ Ensure program does not use more 

than 512 bytes of stack
○ How deep can new control flow stack 

become? [1]
● Deadlock
● Other issues?

[1] Overflowing the kernel stack with BPF. In Linux Plumbers Conference, Richmond, VA, November 2023. Siddharth 
Chintamaneni, Sai Roop Somaraju, and Dan Williams

KERNEL

USER



Root cause: 

verifier does not know 
enough about composition 
of extensions
with kernel and each other

KERNEL

USER



Callgraph-based solution

● Can we teach verifier about 
composition?

● Key idea: statically compute 
helper/kfunc rooted callgraph

○ Compute possible stack usage per node
○ Dynamically track changing callgraphs as 

extensions are attached and nested

KERNEL

USER



Key Challenges and Approaches

● How to generate callgraphs of Linux
○ Lots of indirect calls

● Idea: limit focus to helper functions to start
○ More tractable than entire kernel
○ Utilize state-of-the-art type-based inference tools
○ Eliminate indirect calls in helpers when possible
○ Focus on common helpers/nesting use cases



Summary

● Safety involves more than just the BPF program
● Unsafe composition with kernel and nested BPF programs
● Callgraph approach can catch such issues



Summary

● Safety involves more than just the BPF program
● Unsafe composition with kernel and nested BPF programs
● Callgraph approach can catch such issues

THANK YOU!!
sidchintamaneni@vt.edu

djwillia@vt.edu


