Unsafe kernel extension composition
via BPF program nesting

Siddharth Chintamaneni, Sai Roop Somaraju and Dan Williams

./



Safe extension with BPF

e BPF program loaded into the kernel

e Safety checked with in-kernel static
verifier

e Attached to hook point

e Run on event

e Many use cases:

o Tracing, networking, security, scheduling, ...

o Safety is key!!

USER

KERNEL




Safe extension with BPF

e BPF program loaded into the kernel

e Safety checked with in-kernel static
verifier

e Attached to hook point

e Run on event

e Many use cases:

o Tracing, networking, security, scheduling, ...

o Safety is key!!

USER

KERNEL

O

Verified BPF program




Verifying individual extensions
iIs not enough!!



Incompleteness of Verification

e BPF programs interact O USER

KERNEL

with the kernel through
helper functions or

kfuncs .
O

Verified BPF program




Incompleteness of Verification

e BPF programs interact O USER

KERNEL

with the kernel through
helper functions or
kfuncs




Incompleteness of Verification

BPF programs interact
with the kernel through
helper functions or
kfuncs

Other BPF programs
may be attached to
those creating BPF
nesting

USER

KERNEL




What could go wrong?

e BPF stack checks O USER
KERNEL

o Ensure program does not use more
than 512 bytes of stack

o How deep can new control flow stack
become? [1]

e Deadlock
e Otherissues?

[1] Overflowing the kernel stack with BPF. In Linux Plumbers Conference, Richmond, VA, November 2023. Siddharth
Chintamaneni, Sai Roop Somaraju, and Dan Williams



~ USER

Root cause:

% KERNEL

verifier does not know
enough about composition
of extensions

with kernel and each other




Callgraph-based solution

e Can we teach verifier about
composition?
e Key idea: statically compute

helper/kfunc rooted callgraph
o Compute possible stack usage per node
o Dynamically track changing callgraphs as
extensions are attached and nested

USER

KERNEL




Key Challenges and Approaches

e How to generate callgraphs of Linux

(@)

Lots of indirect calls

e Idea: limit focus to helper functions to start

o O O O

More tractable than entire kernel

Utilize state-of-the-art type-based inference tools
Eliminate indirect calls in helpers when possible
Focus on common helpers/nesting use cases



Summary

e Safety involves more than just the BPF program
e Unsafe composition with kernel and nested BPF programs
e Callgraph approach can catch such issues



Summary

e Safety involves more than just the BPF program
e Unsafe composition with kernel and nested BPF programs
e Callgraph approach can catch such issues

THANK YOU!!

sidchintamaneni@vt.edu
djwillia@vt.edu



