
The State of eBPF
Fuzzing

Paul Chaignon | @pchaigno
Software Engineer, Isovalent at Cisco

1

Paul Chaignon
Software Engineer @ Isovalent / Cisco
Datapath team for Cilium

Interested in BPF fuzzing for a while:
- First contributions to verifier after rebasing bpf-fuzzer
- Updating BPF descriptions in Syzkaller since 2019

Who Am I?

2

https://pchaigno.github.io/

⬢ Syzkaller coverage
⬢ Recent improvements
⬢ Other approaches

⬢ Finding a test oracle
⬢ Conclusion

eBPF Fuzzing

3

Syzkaller

● Well maintained and well integrated
○ Lots of up-to-date syscall descriptions

○ Continuously running and reporting bugs (syzbot)

● Code coverage guided fuzzer (kcov)

● Structured fuzzer: syzlang descriptions of syscalls

● Can find many bugs via kernel sanitizers (KASAN & co.)

● Runs full kernels in VMs

4

Syzkallerʼs Coverage

● Syzkaller finds many bugs in BPF

● But doesn’t tell much on effectiveness

● Code coverage is a better measure

5

Syzkallerʼs Coverage

● From syzbot

● Rough aggregation

6

Syzkallerʼs Coverage

● From syzbot

● Rough aggregation

● Closer to syscall is
better

● BTF desc. is outdated

● Helpers are hard to
reach

7

Challenges of Fuzzing BPF

● Many dependencies between various part of the input
○ Ex. program type and allowed helpers
○ Ex. sizes between map creation and map value load
○ Ex. jump offset and program structure
○ Ex. ordering between write and read of R0
○ Ex. BTF kfunc prototypes and kfunc calls

● Hard to describe with a simple description language
○ Don’t want to reimplement the verifier in the fuzzer

● Several layers to pass:
○ Ex. kfunc call requires valid BTF + valid program + valid exec syscall

8

⬢ Syzkaller coverage
⬢ Recent improvements
⬢ Other approaches

⬢ Finding a test oracle
⬢ Conclusion

eBPF Fuzzing

9

Recent Improvements

● Counting all covered helpers,
even partially covered

● Covered helpers doubled in a
year (+55)

10

Recent Improvements

● Counting all covered helpers,
even partially covered

● Covered helpers doubled in a
year (+55)

● Describing full helper calls
paid off

● Described only 8 helpers,
syzkaller guessed the rest

11

Recent Improvements

● Syzlang becoming more expressive with conditional fields

● Enabled more precision in BPF descriptions

12

⬢ Syzkaller coverage
⬢ Recent improvements
⬢ Other approaches

⬢ Finding a test oracle
⬢ Conclusion

eBPF Fuzzing

13

Running the Verifier in Userspace

● bpf-fuzzer by Facebook: first-ever eBPF fuzzer
○ Uses libfuzzer
○ Verifier executed in userspace with lots of glue code

● kBdysch by Anatoly Trosinenko
○ Uses AFL
○ Relies on LKL instead of manual port to userspace

● High maintenance cost!
○ Did find multiple bugs though

14

Buzzer: Tailored Fuzzing for BPF

● Runs the kernel in VMs like syzkaller

● Somewhat focus on the verifier

● BPF-specific fuzzing strategies
○ Attempting out-of-bound map writes
○ Checking verifier logs
○ Or plain old coverage-based

● Found two vulnerabilities so far

● Focus of the next talk!

15

⬢ Syzkaller coverage
⬢ Recent improvements
⬢ Other approaches

⬢ Finding a test oracle
⬢ Conclusion

eBPF Fuzzing

16

Weʼre Missing a Test Oracle!

● Good at finding memory errors, crashes, deadlocks, kernel warnings, etc.

● Struggle to find verifier bypasses
○ Because verifier bypasses are typically silent

● Need a test oracle for the verifier’s soundness

17

State Embeddings as a Test Oracle

● Hao Sun and Zhendong Su devised one test oracle for the verifier

● Turn silent soundness issues into loud verifier errors

● Published at OSDI’24

18

https://www.usenix.org/conference/osdi24/presentation/sun-hao

State Embeddings as a Test Oracle

19

1. Start from accepted BPF program

State Embeddings as a Test Oracle

20

1. Start from accepted BPF program

2. Fold variables into single register

State Embeddings as a Test Oracle

21

1. Start from accepted BPF program

2. Fold variables into single register

3. Trigger verifier error if folded value is as expected
a. Ex. write to R10

State Embeddings as a Test Oracle

22

1. Start from accepted BPF program

2. Fold variables into single register

3. Trigger verifier error if folded value is as expected
a. Ex. write to R10

4. Modified program passes verifier implies:
a. concrete folded value ∉ abstract folded value

b. Ex. -1 ∉ verifier’s view of R9

c. That is, unsoundness issue!

⬢ Syzkaller coverage
⬢ Recent improvements
⬢ Other approaches

⬢ Finding a test oracle
⬢ Conclusion

eBPF Fuzzing

23

Conclusion

● Help welcome for syzkaller descriptions!
○ Lots to do, easy and harder stuff
○ Very helpful & responsive maintainers
○ Bugs as rewards

● IMO, we should converge approaches in syzkaller
○ Better integration with the kernel (syzbot)

● How can we improve the status quo?
○ Can we use state embeddings in syzkaller? In buzzer?

24

Thanks !

25

https://fr.linkedin.com/in/paulchaignon/en
https://twitter.com/pchaigno
https://github.com/pchaigno
https://pchaigno.github.io

